7. (a) Given that \(u = \frac { x } { 2 } - \frac { 1 } { 8 } \sin 4 x\), show that \(\frac { \mathrm { d } u } { \mathrm {~d} x } = \sin ^ { 2 } 2 x\).
\begin{figure}[h]
\captionsetup{labelformat=empty}
\caption{Figure 2}
\includegraphics[alt={},max width=\textwidth]{0191bf56-a59e-44fe-af8c-bad796156f63-5_697_1239_587_367}
\end{figure}
Figure 2 shows the finite region bounded by the curve \(y = x ^ { \frac { 1 } { 2 } } \sin 2 x\), the line \(x = \frac { \pi } { 4 }\) and the \(x\)-axis. This region is rotated through \(2 \pi\) radians about the \(x\)-axis.
(b) Using the result in part (a), or otherwise, find the exact value of the volume generated.
(8)