Edexcel C4 (Core Mathematics 4) 2006 January

Question 1
View details
  1. A curve \(C\) is described by the equation
$$3 x ^ { 2 } + 4 y ^ { 2 } - 2 x + 6 x y - 5 = 0$$ Find an equation of the tangent to \(C\) at the point \(( 1 , - 2 )\), giving your answer in the form \(a x + b y + c = 0\), where \(a , b\) and \(c\) are integers.
Question 2
View details
2. (a) Given that \(y = \sec x\), complete the table with the values of \(y\) corresponding to \(x = \frac { \pi } { 16 } , \frac { \pi } { 8 }\) and \(\frac { \pi } { 4 }\).
\(x\)0\(\frac { \pi } { 16 }\)\(\frac { \pi } { 8 }\)\(\frac { 3 \pi } { 16 }\)\(\frac { \pi } { 4 }\)
\(y\)11.20269
(b) Use the trapezium rule, with all the values for \(y\) in the completed table, to obtain an estimate for \(\int _ { 0 } ^ { \frac { \pi } { 4 } } \sec x \mathrm {~d} x\). Show all the steps of your working, and give your answer to 4 decimal places. The exact value of \(\int _ { 0 } ^ { \frac { \pi } { 4 } } \sec x \mathrm {~d} x\) is \(\ln ( 1 + \sqrt { } 2 )\).
(c) Calculate the \% error in using the estimate you obtained in part (b).
Question 3
View details
3. Using the substitution \(u ^ { 2 } = 2 x - 1\), or otherwise, find the exact value of $$\int _ { 1 } ^ { 5 } \frac { 3 x } { \sqrt { ( 2 x - 1 ) } } \mathrm { d } x$$ (8)
(8)
Question 4
View details
4. \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Figure 1} \includegraphics[alt={},max width=\textwidth]{9bf05d7e-7bb9-40f6-b626-69a8a6eda5a5-05_556_723_299_632}
\end{figure} Figure 1 shows the finite shaded region, \(R\), which is bounded by the curve \(y = x \mathrm { e } ^ { x }\), the line \(x = 1\), the line \(x = 3\) and the \(x\)-axis. The region \(R\) is rotated through 360 degrees about the \(x\)-axis.
Use integration by parts to find an exact value for the volume of the solid generated.
(8)
Question 5
View details
5. $$f ( x ) = \frac { 3 x ^ { 2 } + 16 } { ( 1 - 3 x ) ( 2 + x ) ^ { 2 } } = \frac { A } { ( 1 - 3 x ) } + \frac { B } { ( 2 + x ) } + \frac { C } { ( 2 + x ) ^ { 2 } } , \quad | x | < \frac { 1 } { 3 } .$$
  1. Find the values of \(A\) and \(C\) and show that \(B = 0\).
  2. Hence, or otherwise, find the series expansion of \(\mathrm { f } ( x )\), in ascending powers of \(x\), up to and including the term in \(x ^ { 3 }\). Simplify each term.
Question 6
View details
6. The line \(l _ { 1 }\) has vector equation $$\mathbf { r } = 8 \mathbf { i } + 12 \mathbf { j } + 14 \mathbf { k } + \lambda ( \mathbf { i } + \mathbf { j } - \mathbf { k } ) ,$$ where \(\lambda\) is a parameter. The point \(A\) has coordinates (4, 8, a), where \(a\) is a constant. The point \(B\) has coordinates ( \(b , 13,13\) ), where \(b\) is a constant. Points \(A\) and \(B\) lie on the line \(l _ { 1 }\).
  1. Find the values of \(a\) and \(b\). Given that the point \(O\) is the origin, and that the point \(P\) lies on \(l _ { 1 }\) such that \(O P\) is perpendicular to \(l _ { 1 }\),
  2. find the coordinates of \(P\).
  3. Hence find the distance \(O P\), giving your answer as a simplified surd.
Question 7
View details
7. The volume of a spherical balloon of radius \(r \mathrm {~cm}\) is \(V \mathrm {~cm} ^ { 3 }\), where \(V = \frac { 4 } { 3 } \pi r ^ { 3 }\).
  1. Find \(\frac { \mathrm { d } V } { \mathrm {~d} r }\). The volume of the balloon increases with time \(t\) seconds according to the formula $$\frac { \mathrm { d } V } { \mathrm {~d} t } = \frac { 1000 } { ( 2 t + 1 ) ^ { 2 } } , \quad t \geqslant 0$$
  2. Using the chain rule, or otherwise, find an expression in terms of \(r\) and \(t\) for \(\frac { \mathrm { d } r } { \mathrm {~d} t }\).
  3. Given that \(V = 0\) when \(t = 0\), solve the differential equation \(\frac { \mathrm { d } V } { \mathrm {~d} t } = \frac { 1000 } { ( 2 t + 1 ) ^ { 2 } }\), to obtain \(V\) in terms of \(t\).
  4. Hence, at time \(t = 5\),
    1. find the radius of the balloon, giving your answer to 3 significant figures,
    2. show that the rate of increase of the radius of the balloon is approximately \(2.90 \times 10 ^ { - 2 } \mathrm {~cm} \mathrm {~s} ^ { - 1 }\).
Question 8
View details
8. \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Figure 2} \includegraphics[alt={},max width=\textwidth]{9bf05d7e-7bb9-40f6-b626-69a8a6eda5a5-10_545_979_285_552}
\end{figure} The curve shown in Figure 2 has parametric equations $$x = t - 2 \sin t , \quad y = 1 - 2 \cos t , \quad 0 \leqslant t \leqslant 2 \pi$$
  1. Show that the curve crosses the \(x\)-axis where \(t = \frac { \pi } { 3 }\) and \(t = \frac { 5 \pi } { 3 }\). The finite region \(R\) is enclosed by the curve and the \(x\)-axis, as shown shaded in Figure 2.
  2. Show that the area of \(R\) is given by the integral $$\int _ { \frac { \pi } { 3 } } ^ { \frac { 5 \pi } { 3 } } ( 1 - 2 \cos t ) ^ { 2 } \mathrm {~d} t$$
  3. Use this integral to find the exact value of the shaded area.