Edexcel P4 (Pure Mathematics 4) 2018 Specimen

Question 1
View details
  1. Use the binomial series to find the expansion of
$$\frac { 1 } { ( 2 + 5 x ) ^ { 3 } } \quad | \boldsymbol { x } | < \frac { 2 } { 5 }$$ in ascending powers of \(x\), up to and including the term in \(x ^ { 3 }\)
Give each coefficient as a fraction in its simplest form.
VIIIV SIHI NI JIIIM ION OCVIIV SIHI NI JAHAM ION OOVJ4V SIHIL NI JIIIM IONOO
Question 2
View details
2. A curve \(C\) has the equation $$x ^ { 3 } + 2 x y - x - y ^ { 3 } - 20 = 0$$
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\) and \(y\).
  2. Find an equation of the tangent to \(C\) at the point \(( 3 , - 2 )\), giving your answer in the form \(a x + b y + c = 0\), where \(a , b\) and \(c\) are integers.
    VIII SIHI NI I IIIM I O N OCVIIN SIHI NI JIHMM ION OOVI4V SIHI NI JIIYM ION OO
Question 3
View details
3. $$\mathrm { f } ( x ) = \frac { 1 } { x ( 3 x - 1 ) ^ { 2 } } = \frac { A } { x } + \frac { B } { ( 3 x - 1 ) } + \frac { C } { ( 3 x - 1 ) ^ { 2 } }$$
  1. Find the values of the constants \(A , B\) and \(C\)
    1. Hence find \(\int \mathrm { f } ( x ) \mathrm { d } x\)
    2. Find \(\int _ { 1 } ^ { 2 } \mathrm { f } ( x ) \mathrm { d } x\), giving your answer in the form \(a + \ln b\), where \(a\) and \(b\) are constants.
      (6)
Question 4
View details
4. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{4de08317-5fb9-4789-8d57-ccf463224c78-10_899_759_127_621} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of the curve \(C\) with parametric equations $$x = \sqrt { 3 } \sin 2 t \quad y = 4 \cos ^ { 2 } t \quad 0 \leqslant t \leqslant \pi$$
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = k \sqrt { 3 } \tan 2 t\), where \(k\) is a constant to be found.
  2. Find an equation of the tangent to \(C\) at the point where \(t = \frac { \pi } { 3 }\) Give your answer in the form \(y = a x + b\), where \(a\) and \(b\) are constants.
Question 5
View details
5. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{4de08317-5fb9-4789-8d57-ccf463224c78-14_614_858_303_552} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows a sketch of part of the curve with equation \(y = 4 x - x \mathrm { e } ^ { \frac { 1 } { 2 } x } , x \geqslant 0\) The curve meets the \(x\)-axis at the origin \(O\) and cuts the \(x\)-axis at the point \(A\) .
  1. Find,in terms of \(\ln 2\) ,the \(x\) coordinate of the point \(A\) .
  2. Find \(\int x \mathrm { e } ^ { \frac { 1 } { 2 } x } \mathrm {~d} x\) The finite region \(R\) ,shown shaded in Figure 2,is bounded by the \(x\)-axis and the curve with equation \(y = 4 x - x \mathrm { e } ^ { \frac { 1 } { 2 } x } , x \geqslant 0\)
  3. Find,by integration,the exact value for the area of \(R\) . Give your answer in terms of \(\ln 2\)
    \includegraphics[max width=\textwidth, alt={}, center]{4de08317-5fb9-4789-8d57-ccf463224c78-18_2655_1943_114_118}
Question 6
View details
6. Prove by contradiction that, if \(a , b\) are positive real numbers, then \(a + b \geqslant 2 \sqrt { a b }\)
\includegraphics[max width=\textwidth, alt={}, center]{4de08317-5fb9-4789-8d57-ccf463224c78-20_2655_1943_114_118}
Question 7
View details
7. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{4de08317-5fb9-4789-8d57-ccf463224c78-21_664_1244_301_351} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} Figure 3 shows a sketch of the curve \(C\) with parametric equations $$x = 4 \cos \left( t + \frac { \pi } { 6 } \right) \quad y = 2 \sin t \quad 0 \leqslant t \leqslant 2 \pi$$
  1. Show that $$x + y = 2 \sqrt { 3 } \cos t$$
  2. Show that a cartesian equation of \(C\) is $$( x + y ) ^ { 2 } + a y ^ { 2 } = b$$ where \(a\) and \(b\) are integers to be found.
    \includegraphics[max width=\textwidth, alt={}, center]{4de08317-5fb9-4789-8d57-ccf463224c78-22_2673_1948_107_118}
Question 8
View details
8. Water is being heated in a kettle. At time \(t\) seconds, the temperature of the water is \(\theta ^ { \circ } \mathrm { C }\). The rate of increase of the temperature of the water at time \(t\) is modelled by the differential equation $$\frac { \mathrm { d } \theta } { \mathrm {~d} t } = \lambda ( 120 - \theta ) \quad \theta \leqslant 100$$ where \(\lambda\) is a positive constant.
Given that \(\theta = 20\) when \(t = 0\)
  1. solve this differential equation to show that $$\theta = 120 - 100 \mathrm { e } ^ { - \lambda t }$$ When the temperature of the water reaches \(100 ^ { \circ } \mathrm { C }\), the kettle switches off.
  2. Given that \(\lambda = 0.01\), find the time, to the nearest second, when the kettle switches off.
    \includegraphics[max width=\textwidth, alt={}]{4de08317-5fb9-4789-8d57-ccf463224c78-26_2642_1833_118_118}
    VIIIV SIHI NI JIIYM ION OCVIIV SIHI NI JIIIAM ION OOVI4V SIHII NI JIIYM IONOO
Question 9
View details
  1. With respect to a fixed origin \(O\), the line \(l _ { 1 }\) is given by the equation
$$\mathbf { r } = \left( \begin{array} { r } 8
1
- 3 \end{array} \right) + \mu \left( \begin{array} { r } - 5
4
3 \end{array} \right)$$ where \(\mu\) is a scalar parameter.
The point \(A\) lies on \(l _ { 1 }\) where \(\mu = 1\)
  1. Find the coordinates of \(A\). The point \(P\) has position vector \(\left( \begin{array} { l } 1
    5
    2 \end{array} \right)\)
    The line \(l _ { 2 }\) passes through the point \(P\) and is parallel to the line \(l _ { 1 }\)
  2. Write down a vector equation for the line \(l _ { 2 }\)
  3. Find the exact value of the distance \(A P\). Give your answer in the form \(k \sqrt { 2 }\), where \(k\) is a constant to be found. The acute angle between \(A P\) and \(l _ { 2 }\) is \(\theta\)
  4. Find the value of \(\cos \theta\) A point \(E\) lies on the line \(l _ { 2 }\)
    Given that \(A P = P E\),
  5. find the area of triangle \(A P E\),
  6. find the coordinates of the two possible positions of \(E\).