Edexcel P4 (Pure Mathematics 4) 2023 October

Question 1
View details
  1. (a) Find the first four terms, in ascending powers of \(x\), of the binomial expansion of
$$\frac { 8 } { ( 2 - 5 x ) ^ { 2 } }$$ writing each term in simplest form.
(b) Find the range of values of \(x\) for which this expansion is valid.
Question 2
View details
2. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{7f5fc83d-ab7c-4edb-a2c6-7a58f1357d5a-04_271_223_246_922} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a cube which is increasing in size.
At time \(t\) seconds,
  • the length of each edge of the cube is \(x \mathrm {~cm}\)
  • the surface area of the cube is \(S \mathrm {~cm} ^ { 2 }\)
  • the volume of the cube is \(V \mathrm {~cm} ^ { 3 }\)
Given that the surface area of the cube is increasing at a constant rate of \(4 \mathrm {~cm} ^ { 2 } \mathrm {~s} ^ { - 1 }\)
  1. show that \(\frac { \mathrm { d } x } { \mathrm {~d} t } = \frac { k } { x }\) where \(k\) is a constant to be found,
  2. show that \(\frac { \mathrm { d } V } { \mathrm {~d} t } = V ^ { p }\) where \(p\) is a constant to be found.
Question 3
View details
  1. In this question you must show all stages of your working.
\section*{Solutions based on calculator technology are not acceptable.}
  1. Use integration by parts to find the exact value of $$\int _ { 0 } ^ { 4 } x ^ { 2 } \mathrm { e } ^ { 2 x } \mathrm {~d} x$$ giving your answer in simplest form.
  2. Use integration by substitution to show that $$\int _ { 3 } ^ { \frac { 21 } { 2 } } \frac { 4 x } { ( 2 x - 1 ) ^ { 2 } } \mathrm {~d} x = a + \ln b$$ where \(a\) and \(b\) are constants to be found.
Question 4
View details
  1. (a) Prove by contradiction that for all positive numbers \(k\)
$$k + \frac { 9 } { k } \geqslant 6$$ (b) Show that the result in part (a) is not true for all real numbers.
Question 5
View details
5. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{7f5fc83d-ab7c-4edb-a2c6-7a58f1357d5a-12_678_987_248_539} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows a sketch of the curve \(C\) with equation $$y ^ { 3 } - x ^ { 2 } + 4 x ^ { 2 } y = k$$ where \(k\) is a positive constant greater than 1
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\) and \(y\). The point \(P\) lies on \(C\).
    Given that the normal to \(C\) at \(P\) has equation \(y = x\), as shown in Figure 2,
  2. find the value of \(k\).
Question 6
View details
  1. The line \(l _ { 1 }\) has equation \(\mathbf { r } = \left( \begin{array} { r } 2
    3
    - 7 \end{array} \right) + \lambda \left( \begin{array} { l } 1
    2
    2 \end{array} \right)\) where \(\lambda\) is a scalar parameter.
The line \(l _ { 2 }\) has equation \(\mathbf { r } = \left( \begin{array} { r } 2
3
- 7 \end{array} \right) + \mu \left( \begin{array} { r } 4
- 1
8 \end{array} \right)\) where \(\mu\) is a scalar parameter.
Given that \(l _ { 1 }\) and \(l _ { 2 }\) meet at the point \(P\)
  1. state the coordinates of \(P\) Given that the angle between lines \(l _ { 1 }\) and \(l _ { 2 }\) is \(\theta\)
  2. find the value of \(\cos \theta\), giving the answer as a fully simplified fraction. The point \(Q\) lies on \(l _ { 1 }\) where \(\lambda = 6\)
    Given that point \(R\) lies on \(l _ { 2 }\) such that triangle \(Q P R\) is an isosceles triangle with \(P Q = P R\)
  3. find the exact area of triangle \(Q P R\)
  4. find the coordinates of the possible positions of point \(R\)
Question 7
View details
  1. The number of goats on an island is being monitored.
When monitoring began there were 3000 goats on the island.
In a simple model, the number of goats, \(x\), in thousands, is modelled by the equation $$x = \frac { k ( 9 t + 5 ) } { 4 t + 3 }$$ where \(k\) is a constant and \(t\) is the number of years after monitoring began.
  1. Show that \(k = 1.8\)
  2. Hence calculate the long-term population of goats predicted by this model. In a second model, the number of goats, \(x\), in thousands, is modelled by the differential equation $$3 \frac { \mathrm {~d} x } { \mathrm {~d} t } = x ( 9 - 2 x )$$
  3. Write \(\frac { 3 } { x ( 9 - 2 x ) }\) in partial fraction form.
  4. Solve the differential equation with the initial condition to show that $$x = \frac { 9 } { 2 + \mathrm { e } ^ { - 3 t } }$$
  5. Find the long-term population of goats predicted by this second model.
Question 8
View details
8. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{7f5fc83d-ab7c-4edb-a2c6-7a58f1357d5a-24_579_642_251_715} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} Figure 3 shows a sketch of the curve \(C\) with parametric equations $$x = 6 t - 3 \sin 2 t \quad y = 2 \cos t \quad 0 \leqslant t \leqslant \frac { \pi } { 2 }$$ The curve meets the \(y\)-axis at 2 and the \(x\)-axis at \(k\), where \(k\) is a constant.
  1. State the value of \(k\).
  2. Use parametric differentiation to show that $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \lambda \operatorname { cosec } t$$ where \(\lambda\) is a constant to be found. The point \(P\) with parameter \(\mathrm { t } = \frac { \pi } { 4 }\) lies on \(C\).
    The tangent to \(C\) at the point \(P\) cuts the \(y\)-axis at the point \(N\).
  3. Find the exact \(y\) coordinate of \(N\), giving your answer in simplest form. The region bounded by the curve, the \(x\)-axis and the \(y\)-axis is rotated through \(2 \pi\) radians about the \(x\)-axis to form a solid of revolution.
    1. Show that the volume of this solid is given by $$\int _ { 0 } ^ { \alpha } \beta ( 1 - \cos 4 t ) d t$$ where \(\alpha\) and \(\beta\) are constants to be found.
    2. Hence, using algebraic integration, find the exact volume of this solid.