CAIE P2 (Pure Mathematics 2) 2022 March

Question 1
View details
1 Solve the equation \(| 5 x - 2 | = | 4 x + 9 |\).
Question 2
View details
2 A curve has equation \(y = 7 + 4 \ln ( 2 x + 5 )\).
Find the equation of the tangent to the curve at the point ( \(- 2,7\) ), giving your answer in the form \(y = m x + c\).
Question 3
View details
3 The variables \(x\) and \(y\) satisfy the equation \(y = 3 ^ { 2 a } a ^ { x }\), where \(a\) is a constant. The graph of \(\ln y\) against \(x\) is a straight line with gradient 0.239 .
  1. Find the value of \(a\) correct to 3 significant figures.
  2. Hence find the value of \(x\) when \(y = 36\). Give your answer correct to 3 significant figures.
Question 4
View details
4
  1. Show that \(\sin 2 \theta \cot \theta - \cos 2 \theta \equiv 1\).
  2. Hence find the exact value of \(\sin \frac { 1 } { 6 } \pi \cot \frac { 1 } { 12 } \pi\).
  3. Find the smallest positive value of \(\theta\) (in radians) satisfying the equation $$\sin 2 \theta \cot \theta - 3 \cos 2 \theta = 1 .$$
Question 5
View details
5
  1. Given that \(y = \tan ^ { 2 } x\), show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 2 \tan x + 2 \tan ^ { 3 } x\).
  2. Find the exact value of \(\int _ { \frac { 1 } { 4 } \pi } ^ { \frac { 1 } { 3 } \pi } \left( \tan x + \tan ^ { 2 } x + \tan ^ { 3 } x \right) \mathrm { d } x\).
Question 6
View details
6 The polynomial \(\mathrm { p } ( x )\) is defined by $$\mathrm { p } ( x ) = 4 x ^ { 3 } + 16 x ^ { 2 } + 9 x - 15$$
  1. Find the quotient when \(\mathrm { p } ( x )\) is divided by \(( 2 x + 3 )\), and show that the remainder is - 6 .
  2. Find \(\int \frac { \mathrm { p } ( x ) } { 2 x + 3 } \mathrm {~d} x\).
  3. Factorise \(\mathrm { p } ( x ) + 6\) completely and hence solve the equation $$p ( \operatorname { cosec } 2 \theta ) + 6 = 0$$ for \(0 ^ { \circ } < \theta < 135 ^ { \circ }\).
Question 7
View details
7 A curve has equation \(\mathrm { e } ^ { 2 x } y - \mathrm { e } ^ { y } = 100\).
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 2 \mathrm { e } ^ { 2 x } y } { \mathrm { e } ^ { y } - \mathrm { e } ^ { 2 x } }\).
  2. Show that the curve has no stationary points.
    It is required to find the \(x\)-coordinate of \(P\), the point on the curve at which the tangent is parallel to the \(y\)-axis.
  3. Show that the \(x\)-coordinate of \(P\) satisfies the equation $$x = \ln 10 - \frac { 1 } { 2 } \ln ( 2 x - 1 )$$
  4. Use an iterative formula, based on the equation in part (c), to find the \(x\)-coordinate of \(P\) correct to 3 significant figures. Use an initial value of 2 and give the result of each iteration to 5 significant figures.
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.