CAIE P2 (Pure Mathematics 2) 2024 June

Question 1
View details
1 Solve the inequality \(| 5 x + 7 | > | 2 x - 3 |\).
\includegraphics[max width=\textwidth, alt={}, center]{76df3465-9617-4f2b-a8b7-f474b2817504-02_67_1653_333_244}
\includegraphics[max width=\textwidth, alt={}, center]{76df3465-9617-4f2b-a8b7-f474b2817504-02_2715_37_143_2010}
Question 2 4 marks
View details
2 Use logarithms to solve the equation \(6 ^ { 2 x - 1 } = 5 \mathrm { e } ^ { 3 x + 2 }\). Give your answer correct to 4 significant figures. [4]
Question 3
View details
3
\includegraphics[max width=\textwidth, alt={}, center]{76df3465-9617-4f2b-a8b7-f474b2817504-04_776_483_310_769} The diagram shows the curve with equation \(y = 8 \mathrm { e } ^ { - x } - \mathrm { e } ^ { 2 x }\). The curve crosses the \(y\)-axis at the point \(A\) and the \(x\)-axis at the point \(B\). The shaded region is bounded by the curve and the two axes.
  1. Find the gradient of the curve at \(A\).
    \includegraphics[max width=\textwidth, alt={}, center]{76df3465-9617-4f2b-a8b7-f474b2817504-04_2715_35_141_2011}
  2. Show that the \(x\)-coordinate of \(B\) is \(\ln 2\) and hence find the area of the shaded region.
Question 4
View details
4 A curve is defined by the parametric equations $$x = 4 \cos ^ { 2 } t , \quad y = \sqrt { 3 } \sin 2 t ,$$ for values of \(t\) such that \(0 < t < \frac { 1 } { 2 } \pi\) .
Find the equation of the normal to the curve at the point for which \(t = \frac { 1 } { 6 } \pi\) .Give your answer in the form \(a x + b y + c = 0\) where \(a , b\) and \(c\) are integers.
\includegraphics[max width=\textwidth, alt={}, center]{76df3465-9617-4f2b-a8b7-f474b2817504-06_2718_35_141_2012}
Question 5
View details
5 The polynomial \(\mathrm { p } ( x )\) is defined by \(\mathrm { p } ( x ) = 9 x ^ { 3 } + 18 x ^ { 2 } + 5 x + 4\).
  1. Find the quotient when \(\mathrm { p } ( x )\) is divided by \(( 3 x + 2 )\), and show that the remainder is 6 .
    \includegraphics[max width=\textwidth, alt={}, center]{76df3465-9617-4f2b-a8b7-f474b2817504-08_2713_33_146_2012}
    \includegraphics[max width=\textwidth, alt={}, center]{76df3465-9617-4f2b-a8b7-f474b2817504-09_2723_33_138_20}
  2. Find the value of \(\int _ { 0 } ^ { 2 } \frac { \mathrm { p } ( x ) } { 3 x + 2 } \mathrm {~d} x\) ,giving your answer in the form \(a + \ln b\) where \(a\) and \(b\) are integers.
Question 6
View details
6
\includegraphics[max width=\textwidth, alt={}, center]{76df3465-9617-4f2b-a8b7-f474b2817504-10_417_700_310_685} The diagram shows the curve with equation \(y = \frac { \ln ( 2 x + 1 ) } { x + 3 }\). The curve has a maximum point \(M\).
  1. Find an expression for \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
  2. Show that the \(x\)-coordinate of \(M\) satisfies the equation \(x = \frac { x + 3 } { \ln ( 2 x + 1 ) } - 0.5\).
  3. Show by calculation that the \(x\)-coordinate of \(M\) lies between 2.5 and 3.0 .
  4. Use an iterative formula based on the equation in part (b) to find the \(x\)-coordinate of \(M\) correct to 4 significant figures. Give the result of each iteration to 6 significant figures.
Question 7
View details
7
  1. Prove that \(2 \sin \theta \operatorname { cosec } 2 \theta \equiv \sec \theta\).
  2. Solve the equation \(\tan ^ { 2 } \theta + 7 \sin \theta \operatorname { cosec } 2 \theta = 8\) for \(- \pi < \theta < \pi\).
    \includegraphics[max width=\textwidth, alt={}, center]{76df3465-9617-4f2b-a8b7-f474b2817504-12_2725_37_136_2010}
  3. Find \(\int 8 \sin ^ { 2 } \frac { 1 } { 2 } x \operatorname { cosec } ^ { 2 } x \mathrm {~d} x\).
    If you use the following page to complete the answer to any question, the question number must be clearly shown.
    \includegraphics[max width=\textwidth, alt={}, center]{76df3465-9617-4f2b-a8b7-f474b2817504-14_2715_35_143_2012}