Edexcel C3 (Core Mathematics 3) 2013 June

Question 1
View details
  1. Given that
$$\frac { 3 x ^ { 4 } - 2 x ^ { 3 } - 5 x ^ { 2 } - 4 } { x ^ { 2 } - 4 } \equiv a x ^ { 2 } + b x + c + \frac { d x + e } { x ^ { 2 } - 4 } , \quad x \neq \pm 2$$ find the values of the constants \(a , b , c , d\) and \(e\).
(4)
Question 2
View details
2. Given that $$\mathrm { f } ( x ) = \ln x , \quad x > 0$$ sketch on separate axes the graphs of
  1. \(\quad y = \mathrm { f } ( x )\),
  2. \(y = | \mathrm { f } ( x ) |\),
  3. \(y = - \mathrm { f } ( x - 4 )\). Show, on each diagram, the point where the graph meets or crosses the \(x\)-axis. In each case, state the equation of the asymptote.
Question 3
View details
3. Given that $$2 \cos ( x + 50 ) ^ { \circ } = \sin ( x + 40 ) ^ { \circ }$$
  1. Show, without using a calculator, that $$\tan x ^ { \circ } = \frac { 1 } { 3 } \tan 40 ^ { \circ }$$
  2. Hence solve, for \(0 \leqslant \theta < 360\), $$2 \cos ( 2 \theta + 50 ) ^ { \circ } = \sin ( 2 \theta + 40 ) ^ { \circ }$$ giving your answers to 1 decimal place.
Question 4
View details
4. $$\mathrm { f } ( x ) = 25 x ^ { 2 } \mathrm { e } ^ { 2 x } - 16 , \quad x \in \mathbb { R }$$
  1. Using calculus, find the exact coordinates of the turning points on the curve with equation \(y = \mathrm { f } ( x )\).
  2. Show that the equation \(\mathrm { f } ( x ) = 0\) can be written as \(x = \pm \frac { 4 } { 5 } \mathrm { e } ^ { - x }\) The equation \(\mathrm { f } ( x ) = 0\) has a root \(\alpha\), where \(\alpha = 0.5\) to 1 decimal place.
  3. Starting with \(x _ { 0 } = 0.5\), use the iteration formula $$x _ { n + 1 } = \frac { 4 } { 5 } \mathrm { e } ^ { - x _ { n } }$$ to calculate the values of \(x _ { 1 } , x _ { 2 }\) and \(x _ { 3 }\), giving your answers to 3 decimal places.
  4. Give an accurate estimate for \(\alpha\) to 2 decimal places, and justify your answer.
Question 5
View details
  1. Given that
$$x = \sec ^ { 2 } 3 y , \quad 0 < y < \frac { \pi } { 6 }$$
  1. find \(\frac { \mathrm { d } x } { \mathrm {~d} y }\) in terms of \(y\).
  2. Hence show that $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 } { 6 x ( x - 1 ) ^ { \frac { 1 } { 2 } } }$$
  3. Find an expression for \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) in terms of \(x\). Give your answer in its simplest form.
Question 6
View details
6. Find algebraically the exact solutions to the equations
  1. \(\ln ( 4 - 2 x ) + \ln ( 9 - 3 x ) = 2 \ln ( x + 1 ) , \quad - 1 < x < 2\)
  2. \(2 ^ { x } \mathrm { e } ^ { 3 x + 1 } = 10\) Give your answer to (b) in the form \(\frac { a + \ln b } { c + \ln d }\) where \(a , b , c\) and \(d\) are integers.
Question 7
View details
7. The function \(f\) has domain \(- 2 \leqslant x \leqslant 6\) and is linear from \(( - 2,10 )\) to \(( 2,0 )\) and from \(( 2,0 )\) to (6, 4). A sketch of the graph of \(y = \mathrm { f } ( x )\) is shown in Figure 1. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{2e29d66c-c3c6-4e4b-acfb-c73c60604d93-09_906_965_367_566} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure}
  1. Write down the range of f .
  2. Find \(\mathrm { ff } ( 0 )\). The function \(g\) is defined by $$\mathrm { g } : x \rightarrow \frac { 4 + 3 x } { 5 - x } , \quad x \in \mathbb { R } , \quad x \neq 5$$
  3. Find \(\mathrm { g } ^ { - 1 } ( x )\)
  4. Solve the equation \(\operatorname { gf } ( x ) = 16\)
Question 8
View details
8. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{2e29d66c-c3c6-4e4b-acfb-c73c60604d93-11_453_1225_255_369} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Kate crosses a road, of constant width 7 m , in order to take a photograph of a marathon runner, John, approaching at \(3 \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
Kate is 24 m ahead of John when she starts to cross the road from the fixed point \(A\). John passes her as she reaches the other side of the road at a variable point \(B\), as shown in Figure 2.
Kate's speed is \(V \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and she moves in a straight line, which makes an angle \(\theta\), \(0 < \theta < 150 ^ { \circ }\), with the edge of the road, as shown in Figure 2. You may assume that \(V\) is given by the formula $$V = \frac { 21 } { 24 \sin \theta + 7 \cos \theta } , \quad 0 < \theta < 150 ^ { \circ }$$
  1. Express \(24 \sin \theta + 7 \cos \theta\) in the form \(R \cos ( \theta - \alpha )\), where \(R\) and \(\alpha\) are constants and where \(R > 0\) and \(0 < \alpha < 90 ^ { \circ }\), giving the value of \(\alpha\) to 2 decimal places. Given that \(\theta\) varies,
  2. find the minimum value of \(V\). Given that Kate's speed has the value found in part (b),
  3. find the distance \(A B\). Given instead that Kate's speed is \(1.68 \mathrm {~m} \mathrm {~s} ^ { - 1 }\),
  4. find the two possible values of the angle \(\theta\), given that \(0 < \theta < 150 ^ { \circ }\).