Edexcel C3 (Core Mathematics 3) 2013 June

Question 1
View details
  1. Express
$$\frac { 3 x + 5 } { x ^ { 2 } + x - 12 } - \frac { 2 } { x - 3 }$$ as a single fraction in its simplest form.
Question 2
View details
2. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{a80a71cb-42e0-4587-8f8e-bacd69b8d07a-03_499_1099_210_443} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of the curve with equation \(y = \mathrm { f } ( x ) , x > 0\), where f is an increasing function of \(x\). The curve crosses the \(x\)-axis at the point \(( 1,0 )\) and the line \(x = 0\) is an asymptote to the curve. On separate diagrams, sketch the curve with equation
  1. \(y = \mathrm { f } ( 2 x ) , x > 0\)
  2. \(y = | \mathrm { f } ( x ) | , x > 0\) Indicate clearly on each sketch the coordinates of the point at which the curve crosses or meets the \(x\)-axis.
Question 3
View details
3. $$f ( x ) = 7 \cos x + \sin x$$ Given that \(\mathrm { f } ( x ) = R \cos ( x - \alpha )\), where \(R > 0\) and \(0 < \alpha < 90 ^ { \circ }\),
  1. find the exact value of \(R\) and the value of \(\alpha\) to one decimal place.
  2. Hence solve the equation $$7 \cos x + \sin x = 5$$ for \(0 \leqslant x < 360 ^ { \circ }\), giving your answers to one decimal place.
  3. State the values of \(k\) for which the equation $$7 \cos x + \sin x = k$$ has only one solution in the interval \(0 \leqslant x < 360 ^ { \circ }\)
Question 4
View details
  1. The functions f and g are defined by
$$\begin{array} { l l } \mathrm { f } : x \mapsto 2 | x | + 3 , & x \in \mathbb { R } ,
\mathrm {~g} : x \mapsto 3 - 4 x , & x \in \mathbb { R } \end{array}$$
  1. State the range of f.
  2. Find \(\mathrm { fg } ( 1 )\).
  3. Find \(\mathrm { g } ^ { - 1 }\), the inverse function of g .
  4. Solve the equation $$\operatorname { gg } ( x ) + [ \mathrm { g } ( x ) ] ^ { 2 } = 0$$
Question 5
View details
5. (a) Differentiate $$\frac { \cos 2 x } { \sqrt { x } }$$ with respect to \(x\).
(b) Show that \(\frac { \mathrm { d } } { \mathrm { d } x } \left( \sec ^ { 2 } 3 x \right)\) can be written in the form $$\mu \left( \tan 3 x + \tan ^ { 3 } 3 x \right)$$ where \(\mu\) is a constant.
(c) Given \(x = 2 \sin \left( \frac { y } { 3 } \right)\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\), simplifying your answer.
Question 6
View details
  1. (i) Use an appropriate double angle formula to show that
$$\operatorname { cosec } 2 x = \lambda \operatorname { cosec } x \sec x$$ and state the value of the constant \(\lambda\).
(ii) Solve, for \(0 \leqslant \theta < 2 \pi\), the equation $$3 \sec ^ { 2 } \theta + 3 \sec \theta = 2 \tan ^ { 2 } \theta$$ You must show all your working. Give your answers in terms of \(\pi\).
Question 7
View details
7. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{a80a71cb-42e0-4587-8f8e-bacd69b8d07a-11_481_858_228_552} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows a sketch of part of the curve with equation \(y = \mathrm { f } ( x )\) where $$\mathrm { f } ( x ) = \left( x ^ { 2 } + 3 x + 1 \right) \mathrm { e } ^ { x ^ { 2 } }$$ The curve cuts the \(x\)-axis at points \(A\) and \(B\) as shown in Figure 2 .
  1. Calculate the \(x\) coordinate of \(A\) and the \(x\) coordinate of \(B\), giving your answers to 3 decimal places.
  2. Find \(\mathrm { f } ^ { \prime } ( x )\). The curve has a minimum turning point at the point \(P\) as shown in Figure 2.
  3. Show that the \(x\) coordinate of \(P\) is the solution of $$x = - \frac { 3 \left( 2 x ^ { 2 } + 1 \right) } { 2 \left( x ^ { 2 } + 2 \right) }$$
  4. Use the iteration formula $$x _ { n + 1 } = - \frac { 3 \left( 2 x _ { n } ^ { 2 } + 1 \right) } { 2 \left( x _ { n } ^ { 2 } + 2 \right) } , \quad \text { with } x _ { 0 } = - 2.4$$ to calculate the values of \(x _ { 1 } , x _ { 2 }\) and \(x _ { 3 }\), giving your answers to 3 decimal places. The \(x\) coordinate of \(P\) is \(\alpha\).
  5. By choosing a suitable interval, prove that \(\alpha = - 2.43\) to 2 decimal places.
Question 8
View details
8. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{a80a71cb-42e0-4587-8f8e-bacd69b8d07a-13_721_1227_116_322} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} The population of a town is being studied. The population \(P\), at time \(t\) years from the start of the study, is assumed to be $$P = \frac { 8000 } { 1 + 7 \mathrm { e } ^ { - k t } } , \quad t \geqslant 0$$ where \(k\) is a positive constant.
The graph of \(P\) against \(t\) is shown in Figure 3. Use the given equation to
  1. find the population at the start of the study,
  2. find a value for the expected upper limit of the population. Given also that the population reaches 2500 at 3 years from the start of the study,
  3. calculate the value of \(k\) to 3 decimal places. Using this value for \(k\),
  4. find the population at 10 years from the start of the study, giving your answer to 3 significant figures.
  5. Find, using \(\frac { \mathrm { d } P } { \mathrm {~d} t }\), the rate at which the population is growing at 10 years from the start of the study.