Edexcel C3 (Core Mathematics 3) 2013 January

Question 1
View details
  1. The curve \(C\) has equation
$$y = ( 2 x - 3 ) ^ { 5 }$$ The point \(P\) lies on \(C\) and has coordinates \(( w , - 32 )\).
Find
  1. the value of \(w\),
  2. the equation of the tangent to \(C\) at the point \(P\) in the form \(y = m x + c\), where \(m\) and \(c\) are constants.
Question 2
View details
2. $$\mathrm { g } ( x ) = \mathrm { e } ^ { x - 1 } + x - 6$$
  1. Show that the equation \(\mathrm { g } ( x ) = 0\) can be written as $$x = \ln ( 6 - x ) + 1 , \quad x < 6$$ The root of \(\mathrm { g } ( x ) = 0\) is \(\alpha\).
    The iterative formula $$x _ { n + 1 } = \ln \left( 6 - x _ { n } \right) + 1 , \quad x _ { 0 } = 2$$ is used to find an approximate value for \(\alpha\).
  2. Calculate the values of \(x _ { 1 } , x _ { 2 }\) and \(x _ { 3 }\) to 4 decimal places.
  3. By choosing a suitable interval, show that \(\alpha = 2.307\) correct to 3 decimal places.
Question 3
View details
3. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{c78b0245-5c5a-407f-ad8a-602949a76e05-04_620_1095_223_420} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows part of the curve with equation \(y = \mathrm { f } ( x ) , x \in \mathbb { R }\).
The curve passes through the points \(Q ( 0,2 )\) and \(P ( - 3,0 )\) as shown.
  1. Find the value of ff(-3). On separate diagrams, sketch the curve with equation
  2. \(y = \mathrm { f } ^ { - 1 } ( x )\),
  3. \(y = \mathrm { f } ( | x | ) - 2\),
  4. \(y = 2 \mathrm { f } \left( \frac { 1 } { 2 } x \right)\). Indicate clearly on each sketch the coordinates of the points at which the curve crosses or meets the axes.
Question 4
View details
  1. (a) Express \(6 \cos \theta + 8 \sin \theta\) in the form \(R \cos ( \theta - \alpha )\), where \(R > 0\) and \(0 < \alpha < \frac { \pi } { 2 }\).
Give the value of \(\alpha\) to 3 decimal places.
(b) $$\mathrm { p } ( \theta ) = \frac { 4 } { 12 + 6 \cos \theta + 8 \sin \theta } , \quad 0 \leqslant \theta \leqslant 2 \pi$$ Calculate
  1. the maximum value of \(\mathrm { p } ( \theta )\),
  2. the value of \(\theta\) at which the maximum occurs.
Question 5
View details
5. (i) Differentiate with respect to \(x\)
  1. \(y = x ^ { 3 } \ln 2 x\)
  2. \(y = ( x + \sin 2 x ) ^ { 3 }\) Given that \(x = \cot y\),
    (ii) show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { - 1 } { 1 + x ^ { 2 } }\)
Question 6
View details
6. (i) Without using a calculator, find the exact value of $$\left( \sin 22.5 ^ { \circ } + \cos 22.5 ^ { \circ } \right) ^ { 2 }$$ You must show each stage of your working.
(ii) (a) Show that \(\cos 2 \theta + \sin \theta = 1\) may be written in the form $$k \sin ^ { 2 } \theta - \sin \theta = 0 , \text { stating the value of } k$$ (b) Hence solve, for \(0 \leqslant \theta < 360 ^ { \circ }\), the equation $$\cos 2 \theta + \sin \theta = 1$$
Question 7
View details
7. $$\mathrm { h } ( x ) = \frac { 2 } { x + 2 } + \frac { 4 } { x ^ { 2 } + 5 } - \frac { 18 } { \left( x ^ { 2 } + 5 \right) ( x + 2 ) } , \quad x \geqslant 0$$
  1. Show that \(\mathrm { h } ( x ) = \frac { 2 x } { x ^ { 2 } + 5 }\)
  2. Hence, or otherwise, find \(\mathrm { h } ^ { \prime } ( x )\) in its simplest form. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{c78b0245-5c5a-407f-ad8a-602949a76e05-10_729_1235_644_351} \captionsetup{labelformat=empty} \caption{Figure 2}
    \end{figure} Figure 2 shows a graph of the curve with equation \(y = \mathrm { h } ( x )\).
  3. Calculate the range of \(\mathrm { h } ( x )\).
Question 8
View details
  1. The value of Bob's car can be calculated from the formula
$$V = 17000 \mathrm { e } ^ { - 0.25 t } + 2000 \mathrm { e } ^ { - 0.5 t } + 500$$ where \(V\) is the value of the car in pounds \(( \pounds )\) and \(t\) is the age in years.
  1. Find the value of the car when \(t = 0\)
  2. Calculate the exact value of \(t\) when \(V = 9500\)
  3. Find the rate at which the value of the car is decreasing at the instant when \(t = 8\). Give your answer in pounds per year to the nearest pound.