CAIE P2 (Pure Mathematics 2) 2022 June

Question 6
View details
6
\includegraphics[max width=\textwidth, alt={}, center]{712be8e6-e1e9-4662-b1f1-51c39c2c9df1-08_542_661_269_731} The diagram shows the curve \(y = 3 \mathrm { e } ^ { 2 x - 1 }\). The shaded region is bounded by the curve and the lines \(x = a , x = a + 1\) and \(y = 0\), where \(a\) is a constant. It is given that the area of the shaded region is 120 square units.
  1. Show that \(a = \frac { 1 } { 2 } \ln \left( 80 + \mathrm { e } ^ { 2 a - 1 } \right) - \frac { 1 } { 2 }\).
  2. Use an iterative formula, based on the equation in part (a), to find the value of \(a\) correct to 3 significant figures. Give the result of each iteration to 5 significant figures.
Question 7
View details
7
\includegraphics[max width=\textwidth, alt={}, center]{712be8e6-e1e9-4662-b1f1-51c39c2c9df1-10_551_657_274_735} The diagram shows the curves \(y = \sqrt { 2 \pi - 2 x }\) and \(y = \sin ^ { 2 } x\) for \(0 \leqslant x \leqslant \pi\). The shaded region is bounded by the two curves and the line \(x = 0\). Find the exact area of the shaded region.