CAIE P2 (Pure Mathematics 2) 2022 June

Question 1
View details
1 Given that \(y = \frac { \ln x } { x ^ { 2 } }\), find the exact value of \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) when \(x = \mathrm { e }\).
Question 2
View details
2
  1. Sketch, on the same diagram, the graphs of \(y = | 2 x - 9 |\) and \(y = 5 x - 3\).
  2. Solve the equation \(| 2 x - 9 | = 5 x - 3\).
Question 3
View details
3 A curve has equation \(\mathrm { e } ^ { 2 x } \cos 2 y + \sin y = 1\).
Find the exact gradient of the curve at the point \(\left( 0 , \frac { 1 } { 6 } \pi \right)\).
Question 4
View details
4
  1. Use the trapezium rule with three intervals to show that the value of \(\int _ { 1 } ^ { 4 } \ln x \mathrm {~d} x\) is approximately \(\ln 12\).
  2. Use a graph of \(y = \ln x\) to show that \(\ln 12\) is an under-estimate of the true value of \(\int _ { 1 } ^ { 4 } \ln x \mathrm {~d} x\).
Question 5
View details
5 The polynomial \(\mathrm { p } ( x )\) is defined by $$\mathrm { p } ( x ) = 2 x ^ { 3 } + a x ^ { 2 } - 3 x - 4$$ where \(a\) is a constant. It is given that ( \(x - 4\) ) is a factor of \(\mathrm { p } ( x )\).
  1. Find the value of \(a\) and hence factorise \(\mathrm { p } ( x )\).
  2. Show that the equation \(\mathrm { p } \left( \mathrm { e } ^ { 3 y } \right) = 0\) has only one real root and find its exact value.
Question 6
View details
6
\includegraphics[max width=\textwidth, alt={}, center]{1b9c6b41-69dd-4132-92c7-9507cbd741dd-08_542_661_269_731} The diagram shows the curve \(y = 3 \mathrm { e } ^ { 2 x - 1 }\). The shaded region is bounded by the curve and the lines \(x = a , x = a + 1\) and \(y = 0\), where \(a\) is a constant. It is given that the area of the shaded region is 120 square units.
  1. Show that \(a = \frac { 1 } { 2 } \ln \left( 80 + \mathrm { e } ^ { 2 a - 1 } \right) - \frac { 1 } { 2 }\).
  2. Use an iterative formula, based on the equation in part (a), to find the value of \(a\) correct to 3 significant figures. Give the result of each iteration to 5 significant figures.
Question 7
View details
7
\includegraphics[max width=\textwidth, alt={}, center]{1b9c6b41-69dd-4132-92c7-9507cbd741dd-10_551_657_274_735} The diagram shows the curves \(y = \sqrt { 2 \pi - 2 x }\) and \(y = \sin ^ { 2 } x\) for \(0 \leqslant x \leqslant \pi\). The shaded region is bounded by the two curves and the line \(x = 0\). Find the exact area of the shaded region.
Question 8
View details
8
  1. Express \(3 \sin 2 \theta \sec \theta + 10 \cos \left( \theta - 30 ^ { \circ } \right)\) in the form \(R \sin ( \theta + \alpha )\) where \(R > 0\) and \(0 ^ { \circ } < \alpha < 90 ^ { \circ }\). Give the value of \(\alpha\) correct to 2 decimal places.
  2. Hence solve the equation \(3 \sin 4 \beta \sec 2 \beta + 10 \cos \left( 2 \beta - 30 ^ { \circ } \right) = 2\) for \(0 ^ { \circ } < \beta < 90 ^ { \circ }\).
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.