- (a) Sketch the curve with equation
$$y = a ^ { x } + 4$$
where \(a\) is a positive constant greater than 1
On your sketch, show
- the coordinates of the point of intersection of the curve with the \(y\)-axis
- the equation of the asymptote of the curve
| \(x\) | 2 | 2.3 | 2.6 | 2.9 | 3.2 | 3.5 |
| \(y\) | 0 | 0.3246 | 0.8629 | 1.6643 | 2.7896 | 4.3137 |
The table shows corresponding values of \(x\) and \(y\) for
$$y = 2 ^ { x } - 2 x$$
with the values of \(y\) given to 4 decimal places as appropriate.
Using the trapezium rule with all the values of \(y\) in the given table,
(b) obtain an estimate for \(\int _ { 2 } ^ { 3.5 } \left( 2 ^ { x } - 2 x \right) \mathrm { d } x\), giving your answer to 2 decimal places.
(c) Using your answer to part (b) and making your method clear, estimate
- \(\int _ { 2 } ^ { 3.5 } \left( 2 ^ { x } + 2 x \right) \mathrm { d } x\)
- \(\int _ { 2 } ^ { 3.5 } \left( 2 ^ { x + 1 } - 4 x \right) \mathrm { d } x\)