CAIE Further Paper 4 (Further Paper 4) 2023 June

Question 1
View details
1 The lengths of the leaves of a particular type of tree are normally distributed with mean \(\mu \mathrm { cm }\). The lengths, \(x \mathrm {~cm}\), of a random sample of 12 leaves of this type are recorded. The results are summarised as follows. $$\sum x = 91.2 \quad \sum x ^ { 2 } = 695.8$$ Find a 95\% confidence interval for \(\mu\).
Question 2
View details
2 The children at two large schools, \(P\) and \(Q\), are all given the same puzzle to solve. A random sample of size 10 is taken from the children at school \(P\). Their individual times to complete the puzzle give a sample mean of 9.12 minutes and an unbiased variance estimate of 2.16 minutes \({ } ^ { 2 }\). A random sample of size 12 is taken from the children at school \(Q\). Their individual times, \(x\) minutes, to complete the puzzle are summarised by $$\sum x = 99.6 \quad \sum ( x - \bar { x } ) ^ { 2 } = 21.5$$ where \(\bar { x }\) is the sample mean. Times to complete the puzzle are assumed to be normally distributed with the same population variance. Test at the \(5 \%\) significance level whether the population mean time taken to complete the puzzle by children at school \(P\) is greater than the population mean time taken to complete the puzzle by children at school \(Q\).
Question 3
View details
3 A random sample of 50 values of the continuous random variable \(X\) was taken. These values are summarised in the following table.
Interval\(1 \leqslant x < 1.5\)\(1.5 \leqslant x < 2\)\(2 \leqslant x < 2.5\)\(2.5 \leqslant x < 3\)\(3 \leqslant x < 3.5\)\(3.5 \leqslant x \leqslant 4\)
Observed frequency338111312
It is required to test the goodness of fit of the distribution with probability density function \(f\) given by $$f ( x ) = \begin{cases} \frac { 1 } { 24 } \left( \frac { 4 } { x ^ { 2 } } + x ^ { 2 } \right) & 1 \leqslant x \leqslant 4
0 & \text { otherwise } \end{cases}$$ The expected frequencies, correct to 4 decimal places, are given in the following table.
Interval\(1 \leqslant x < 1.5\)\(1.5 \leqslant x < 2\)\(2 \leqslant x < 2.5\)\(2.5 \leqslant x < 3\)\(3 \leqslant x < 3.5\)\(3.5 \leqslant x \leqslant 4\)
Expected frequency4.4271\(a\)6.12858.4549\(b\)14.9678
  1. Show that \(a = 4.6007\) and find the value of \(b\).
  2. Carry out a goodness of fit test, at the \(10 \%\) significance level, to test whether f is a satisfactory model for the data.
Question 4
View details
4 A random sample of 13 technology companies is chosen and the numbers of employees in 2018 and in 2022 are recorded.
CompanyABCD\(E\)\(F\)G\(H\)IJ\(K\)\(L\)M
Number in 2018104191262349705143514942912863041104
Number in 20221062412722810125253215644924782941154
A researcher claims that there has been an increase in the median number of employees at technology companies between 2018 and 2022.
  1. Carry out a Wilcoxon matched-pairs signed-rank test, at the \(5 \%\) significance level, to test whether the data supports this claim.
    The researcher notices that the figures for company \(G\) have been recorded incorrectly. In fact, the number of employees in 2018 was 32 and the number of employees in 2022 was 35.
  2. Explain, with numerical justification, whether or not the conclusion of the test in part (a) remains the same.
Question 5
View details
5 Harry has three coins.
  • One coin is biased so that, when it is thrown, the probability of obtaining a head is \(\frac { 1 } { 3 }\).
  • The second coin is biased so that, when it is thrown, the probability of obtaining a head is \(\frac { 1 } { 4 }\).
  • The third coin is biased so that, when it is thrown, the probability of obtaining a head is \(\frac { 1 } { 5 }\).
The random variable \(X\) is the number of heads that Harry obtains when he throws all three coins together.
  1. Find the probability generating function of \(X\).
    Isaac has two fair coins. The random variable \(Y\) is the number of heads that Isaac obtains when he throws both of his coins together. The random variable \(Z\) is the total number of heads obtained when Harry throws his three coins and Isaac throws his two coins.
  2. Find the probability generating function of \(Z\), expressing your answer as a polynomial in \(t\).
  3. Use the probability generating function of \(Z\) to find \(E ( Z )\).
Question 6
View details
6 The continuous random variable \(X\) has probability density function f given by $$f ( x ) = \begin{cases} \frac { 3 } { 28 } \left( e ^ { \frac { 1 } { 2 } x } + 4 e ^ { - \frac { 1 } { 2 } x } \right) & 0 \leqslant x \leqslant 2 \ln 3
0 & \text { otherwise } \end{cases}$$
  1. Find the cumulative distribution function of \(X\).
    The random variable \(Y\) is defined by \(Y = e ^ { \frac { 1 } { 2 } ( X ) }\).
  2. Find the probability density function of \(Y\).
  3. Find the 30th percentile of \(Y\).
  4. Find \(\mathrm { E } \left( Y ^ { 4 } \right)\).
    If you use the following page to complete the answer to any question, the question number must be clearly shown.