CAIE S2 (Statistics 2) 2015 November

Question 1
View details
1 It is known that the number, \(N\), of words contained in the leading article each day in a certain newspaper can be modelled by a normal distribution with mean 352 and variance 29. A researcher takes a random sample of 10 leading articles and finds the sample mean, \(\bar { N }\), of \(N\).
  1. State the distribution of \(\bar { N }\), giving the values of any parameters.
  2. Find \(\mathrm { P } ( \bar { N } > 354 )\).
Question 2
View details
2 The number of calls received per 5-minute period at a large call centre has a Poisson distribution with mean \(\lambda\), where \(\lambda > 30\). If more than 55 calls are received in a 5 -minute period, the call centre is overloaded. It has been found that the probability of being overloaded during a randomly chosen 5 -minute period is 0.01 . Use the normal approximation to the Poisson distribution to obtain a quadratic equation in \(\sqrt { } \lambda\) and hence find the value of \(\lambda\).
Question 3
View details
3 From a random sample of 65 people in a certain town, the proportion who own a bicycle was noted. From this result an \(\alpha \%\) confidence interval for the proportion, \(p\), of all people in the town who own a bicycle was calculated to be \(0.284 < p < 0.516\).
  1. Find the proportion of people in the sample who own a bicycle.
  2. Calculate the value of \(\alpha\) correct to 2 significant figures.
Question 4
View details
4 A random variable \(X\) has probability density function given by $$f ( x ) = \begin{cases} k \left( 4 - x ^ { 2 } \right) & - 2 \leqslant x \leqslant 2
0 & \text { otherwise } \end{cases}$$ where \(k\) is a constant.
  1. Show that \(k = \frac { 3 } { 32 }\).
  2. Sketch the graph of \(y = \mathrm { f } ( x )\) and hence write down the value of \(\mathrm { E } ( X )\).
  3. Find \(\mathrm { P } ( X < 1 )\).
Question 5
View details
5
  1. Narika has a die which is known to be biased so that the probability of throwing a 6 on any throw is \(\frac { 1 } { 100 }\). She uses an approximating distribution to calculate the probability of obtaining no 6s in 450 throws. Find the percentage error in using the approximating distribution for this calculation.
  2. Johan claims that a certain six-sided die is biased so that it shows a 6 less often than it would if the die were fair. In order to test this claim, the die is thrown 25 times and it shows a 6 on only 2 throws. Test at the \(10 \%\) significance level whether Johan's claim is justified.
Question 6
View details
6 Parcels arriving at a certain office have weights \(W \mathrm {~kg}\), where the random variable \(W\) has mean \(\mu\) and standard deviation 0.2 . The value of \(\mu\) used to be 2.60 , but there is a suspicion that this may no longer be true. In order to test at the 5\% significance level whether the value of \(\mu\) has increased, a random sample of 75 parcels is chosen. You may assume that the standard deviation of \(W\) is unchanged.
  1. The mean weight of the 75 parcels is found to be 2.64 kg . Carry out the test.
  2. Later another test of the same hypotheses at the \(5 \%\) significance level, with another random sample of 75 parcels, is carried out. Given that the value of \(\mu\) is now 2.68 , calculate the probability of a Type II error.
Question 7
View details
7 The diameter, in cm, of pistons made in a certain factory is denoted by \(X\), where \(X\) is normally distributed with mean \(\mu\) and variance \(\sigma ^ { 2 }\). The diameters of a random sample of 100 pistons were measured, with the following results. $$n = 100 \quad \Sigma x = 208.7 \quad \Sigma x ^ { 2 } = 435.57$$
  1. Calculate unbiased estimates of \(\mu\) and \(\sigma ^ { 2 }\). The pistons are designed to fit into cylinders. The internal diameter, in cm , of the cylinders is denoted by \(Y\), where \(Y\) has an independent normal distribution with mean 2.12 and variance 0.000144 . A piston will not fit into a cylinder if \(Y - X < 0.01\).
  2. Using your answers to part (i), find the probability that a randomly chosen piston will not fit into a randomly chosen cylinder.