CAIE S2 (Statistics 2) 2013 November

Question 1
View details
1 A random sample of 80 values of a variable \(X\) is taken and these values are summarised below. $$n = 80 \quad \Sigma x = 150.2 \quad \Sigma x ^ { 2 } = 820.24$$ Calculate unbiased estimates of the population mean and variance of \(X\) and hence find a \(95 \%\) confidence interval for the population mean of \(X\).
Question 2
View details
2 A traffic officer notes the speeds of vehicles as they pass a certain point. In the past the mean of these speeds has been \(62.3 \mathrm {~km} \mathrm {~h} ^ { - 1 }\) and the standard deviation has been \(10.4 \mathrm {~km} \mathrm {~h} ^ { - 1 }\). A speed limit is introduced, and following this, the mean of the speeds of 75 randomly chosen vehicles passing the point is found to be \(59.9 \mathrm {~km} \mathrm {~h} ^ { - 1 }\).
  1. Making an assumption that should be stated, test at the \(2 \%\) significance level whether the mean speed has decreased since the introduction of the speed limit.
  2. Explain whether it was necessary to use the Central Limit theorem in part (i).
Question 3
View details
3 The waiting time, \(T\) weeks, for a particular operation at a hospital has probability density function given by $$f ( t ) = \begin{cases} \frac { 1 } { 2500 } \left( 100 t - t ^ { 3 } \right) & 0 \leqslant t \leqslant 10
0 & \text { otherwise } \end{cases}$$
  1. Given that \(\mathrm { E } ( T ) = \frac { 16 } { 3 }\), find \(\operatorname { Var } ( T )\).
  2. \(10 \%\) of patients have to wait more than \(n\) weeks for their operation. Find the value of \(n\), giving your answer correct to the nearest integer.
Question 4
View details
4 Goals scored by Femchester United occur at random with a constant average of 1.2 goals per match. Goals scored against Femchester United occur independently and at random with a constant average of 0.9 goals per match.
  1. Find the probability that in a randomly chosen match involving Femchester,
    (a) a total of 3 goals are scored,
    (b) a total of 3 goals are scored and Femchester wins. The manager promises the Femchester players a bonus if they score at least 35 goals in the next 25 matches.
  2. Find the probability that the players receive the bonus.
Question 5
View details
5 A fair six-sided die has faces numbered \(1,2,3,4,5,6\). The score on one throw is denoted by \(X\).
  1. Write down the value of \(\mathrm { E } ( X )\) and show that \(\operatorname { Var } ( X ) = \frac { 35 } { 12 }\). Fayez has a six-sided die with faces numbered \(1,2,3,4,5,6\). He suspects that it is biased so that when it is thrown it is more likely to show a low number than a high number. In order to test his suspicion, he plans to throw the die 50 times. If the mean score is less than 3 he will conclude that the die is biased.
  2. Find the probability of a Type I error.
  3. With reference to this context, describe circumstances in which Fayez would make a Type II error.
Question 6
View details
6 The lifetimes, in hours, of Longlive light bulbs and Enerlow light bulbs have the independent distributions \(\mathrm { N } \left( 1020,45 ^ { 2 } \right)\) and \(\mathrm { N } \left( 2800,52 ^ { 2 } \right)\) respectively.
  1. Find the probability that the total of the lifetimes of 5 randomly chosen Longlive bulbs is less than 5200 hours.
  2. Find the probability that the lifetime of a randomly chosen Enerlow bulb is at least 3 times that of a randomly chosen Longlive bulb.