7 A journey in a certain car consists of two stages with a stop for filling up with fuel after the first stage. The length of time, \(T\) minutes, taken for each stage has a normal distribution with mean 74 and standard deviation 7.3. The length of time, \(F\) minutes, it takes to fill up with fuel has a normal distribution with mean 5 and standard deviation 1.7. The length of time it takes to pay for the fuel is exactly 4 minutes. The variables \(T\) and \(F\) are independent and the times for the two stages are independent of each other.
- Find the probability that the total time for the journey is less than 154 minutes.
- A second car has a fuel tank with exactly twice the capacity of the first car. Find the mean and variance of this car's fuel fill-up time.
- This second car's time for each stage of the journey follows a normal distribution with mean 69 minutes and standard deviation 5.2 minutes. The length of time it takes to pay for the fuel for this car is also exactly 4 minutes. Find the probability that the total time for the journey taken by the first car is more than the total time taken by the second car.