CAIE S2 (Statistics 2) 2020 March

Question 5
View details
5 Bottles of Lanta contain approximately 300 ml of juice. The volume of juice, in millilitres, in a bottle is \(300 + X\), where \(X\) is a random variable with probability density function given by $$f ( x ) = \begin{cases} \frac { 3 } { 4000 } \left( 100 - x ^ { 2 } \right) & - 10 \leqslant x \leqslant 10
0 & \text { otherwise } \end{cases}$$
  1. Find the probability that a randomly chosen bottle of Lanta contains more than 305 ml of juice.
  2. Given that \(25 \%\) of bottles of Lanta contain more than \(( 300 + p ) \mathrm { ml }\) of juice, show that $$p ^ { 3 } - 300 p + 1000 = 0$$
  3. Given that \(p = 3.47\), and that \(50 \%\) of bottles of Lanta contain between ( \(300 - q\) ) and ( \(300 + q\) ) ml of juice, find \(q\). Justify your answer.