6 The probability density function, f, of a random variable \(X\) is given by
$$f ( x ) = \begin{cases} k \left( 6 x - x ^ { 2 } \right) & 0 \leqslant x \leqslant 6
0 & \text { otherwise } \end{cases}$$
where \(k\) is a constant.
State the value of \(\mathrm { E } ( X )\) and show that \(\operatorname { Var } ( X ) = \frac { 9 } { 5 }\).