8 In an examination, the marks in the theory paper and the marks in the practical paper are denoted by the random variables \(X\) and \(Y\) respectively, where \(X \sim \mathrm {~N} ( 57,13 )\) and \(Y \sim \mathrm {~N} ( 28,5 )\). You may assume that each candidate's marks in the two papers are independent. The final score of each candidate is found by calculating \(X + 2.5 Y\). A candidate is chosen at random. Without using a continuity correction, find the probability that this candidate
- has a final score that is greater than 140 ,
- obtains at least 20 more marks in the theory paper than in the practical paper.