5 The random variable \(T\) denotes the time in seconds for which a firework burns before exploding. The probability density function of \(T\) is given by
$$\mathrm { f } ( t ) = \begin{cases} k \mathrm { e } ^ { 0.2 t } & 0 \leqslant t \leqslant 5
0 & \text { otherwise } \end{cases}$$
where \(k\) is a constant.
- Show that \(k = \frac { 1 } { 5 ( \mathrm { e } - 1 ) }\).
- Sketch the probability density function.
- \(80 \%\) of fireworks burn for longer than a certain time before they explode. Find this time.