CAIE S2 (Statistics 2) 2024 June

Question 1
View details
1 The random variable \(X\) has the distribution \(\mathrm { B } ( 4000,0.001 )\).
  1. Use a suitable approximating distribution to find \(\mathrm { P } ( 2 \leqslant X < 5 )\).
  2. Justify your approximating distribution in this case.
Question 2 1 marks
View details
2 The widths, \(w \mathrm {~cm}\), of a random sample of 150 leaves of a certain kind were measured. The sample mean of \(w\) was found to be 3.12 cm . Using this sample, an approximate \(95 \%\) confidence interval for the population mean of the widths in centimetres was found to be [3.01, 3.23].
  1. Calculate an estimate of the population standard deviation.
  2. Explain whether it was necessary to use the Central Limit theorem in your answer to part (a). [1]
Question 3
View details
3 The masses in kilograms of large and small bags of cement have the independent distributions \(\mathrm { N } ( 50,2.4 )\) and \(\mathrm { N } ( 26,1.8 )\) respectively. Find the probability that the total mass of 5 randomly chosen large bags of cement is greater than the total mass of 10 randomly chosen small bags of cement.
\includegraphics[max width=\textwidth, alt={}, center]{7c078a14-98f9-4292-ae76-a2642238176f-04_2714_34_143_2012}
\includegraphics[max width=\textwidth, alt={}, center]{7c078a14-98f9-4292-ae76-a2642238176f-05_2724_35_136_20}
Question 4
View details
4 In this question you should not use an approximating distribution.
At an election in Menham last year, \(24 \%\) of voters supported the Today Party. A student wishes to test whether support for the Today Party has decreased since last year. He chooses a random sample of 25 voters in Menham and finds that exactly 2 of them say that they support the Today Party. Test at the 5\% significance level whether support for the Today Party has decreased.
Question 5
View details
5 A random variable \(X\) has probability density function f given by $$f ( x ) = \begin{cases} a x - x ^ { 3 } & 0 \leqslant x \leqslant \sqrt { 2 }
0 & \text { otherwise } \end{cases}$$ where \(a\) is a constant.
  1. Show that \(a = 2\) .
  2. Find the median of \(X\) .
  3. Find the exact value of \(\mathrm { E } ( X )\).
Question 6
View details
6 The numbers of green sweets in 200 randomly chosen packets of Frutos are summarised in the table.
Number of green sweets0123\(> 3\)
Number of packets325097210
  1. Calculate an unbiased estimate for the population mean of the number of green sweets in a packet of Frutos, and show that an unbiased estimate of the population variance is 0.783 correct to 3 significant figures.
    The manufacturers of Frutos claim that the mean number of green sweets in a packet is 1.65 .
    Anji believes that the true value of the mean, \(\mu\), is less than 1.65 . She uses the results from the 200 randomly chosen packets to test the manufacturers’ claim.
  2. State suitable null and alternative hypotheses for the test.
    \includegraphics[max width=\textwidth, alt={}, center]{7c078a14-98f9-4292-ae76-a2642238176f-08_2714_37_143_2008}
  3. Show that the result of Anji's test is significant at the \(5 \%\) level but not at the \(1 \%\) level.
  4. It is given that Anji made a Type I error. Explain how this shows that the significance level that Anji used in her test was not \(1 \%\).
Question 7
View details
7 The independent random variables \(X\) and \(Y\) have the distributions \(\operatorname { Po } ( 1.9 )\) and \(\operatorname { Po } ( 2.2 )\) respectively.
  1. Find \(\mathrm { P } ( X + Y < 4 )\).
    \includegraphics[max width=\textwidth, alt={}, center]{7c078a14-98f9-4292-ae76-a2642238176f-10_74_1581_406_322}
    \includegraphics[max width=\textwidth, alt={}, center]{7c078a14-98f9-4292-ae76-a2642238176f-10_75_1581_497_322}
  2. Find the probability that \(X = 2\) given that \(X + Y < 4\).
    \includegraphics[max width=\textwidth, alt={}, center]{7c078a14-98f9-4292-ae76-a2642238176f-10_2715_35_144_2012}
  3. A sample of 60 randomly chosen pairs of values of \(X\) and \(Y\) is taken,and the value of \(X + Y\) is calculated for each pair.The sample mean of these 60 values is found. Find the probability that the sample mean of \(X + Y\) is less than 4.0 .
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.