4 A builder is planning to build 12 houses along one side of a road. He will build 2 houses in style \(A\), 2 houses in style \(B , 3\) houses in style \(C , 4\) houses in style \(D\) and 1 house in style \(E\).
- Find the number of possible arrangements of these 12 houses.
| Road |
| \(\square \square \square \square \square \square \square \square \square\) | \(\square \square \square\) | | |
The 12 houses will be in two groups of 6 (see diagram). Find the number of possible arrangements if all the houses in styles \(A\) and \(D\) are in the first group and all the houses in styles \(B , C\) and \(E\) are in the second group.- Four of the 12 houses will be selected for a survey. Exactly one house must be in style \(B\) and exactly one house in style \(C\). Find the number of ways in which these four houses can be selected.