CAIE Further Paper 3 (Further Paper 3) 2023 November

Question 2
View details
2 A ball of mass 2 kg is projected vertically downwards with speed \(5 \mathrm {~ms} ^ { - 1 }\) through a liquid. At time \(t \mathrm {~s}\) after projection, the velocity of the ball is \(v \mathrm {~ms} ^ { - 1 }\) and its displacement from its starting point is \(x \mathrm {~m}\). The forces acting on the ball are its weight and a resistive force of magnitude \(0.2 v ^ { 2 } \mathrm {~N}\).
  1. Find an expression for \(v\) in terms of \(t\).
  2. Deduce what happens to \(v\) for large values of \(t\).
    \includegraphics[max width=\textwidth, alt={}, center]{e7091f6c-af72-49f3-b825-cdce9fb2c06f-06_803_652_251_703} A uniform square lamina of side \(2 a\) and weight \(W\) is suspended from a light inextensible string attached to the midpoint \(E\) of the side \(A B\). The other end of the string is attached to a fixed point \(P\) on a rough vertical wall. The vertex \(B\) of the lamina is in contact with the wall. The string \(E P\) is perpendicular to the side \(A B\) and makes an angle \(\theta\) with the wall (see diagram). The string and the lamina are in a vertical plane perpendicular to the wall. The coefficient of friction between the wall and the lamina is \(\frac { 1 } { 2 }\). Given that the vertex \(B\) is about to slip up the wall, find the value of \(\tan \theta\).
    \includegraphics[max width=\textwidth, alt={}, center]{e7091f6c-af72-49f3-b825-cdce9fb2c06f-08_581_576_269_731} A light elastic string has natural length \(8 a\) and modulus of elasticity \(5 m g\). A particle \(P\) of mass \(m\) is attached to the midpoint of the string. The ends of the string are attached to points \(A\) and \(B\) which are a distance \(12 a\) apart on a smooth horizontal table. The particle \(P\) is held on the table so that \(A P = B P = L\) (see diagram). The particle \(P\) is released from rest. When \(P\) is at the midpoint of \(A B\) it has speed \(\sqrt { 80 a g }\).
  3. Find \(L\) in terms of \(a\).
  4. Find the initial acceleration of \(P\) in terms of \(g\).