CAIE Further Paper 3 (Further Paper 3) 2022 November

Question 2
View details
2 A light elastic string has natural length \(a\) and modulus of elasticity 4 mg . One end of the string is fixed to a point \(O\) on a smooth horizontal surface. A particle \(P\) of mass \(m\) is attached to the other end of the string. The particle \(P\) is projected along the surface in the direction \(O P\). When the length of the string is \(\frac { 5 } { 4 } a\), the speed of \(P\) is \(v\). When the length of the string is \(\frac { 3 } { 2 } a\), the speed of \(P\) is \(\frac { 1 } { 2 } v\).
  1. Find an expression for \(v\) in terms of \(a\) and \(g\).
  2. Find, in terms of \(g\), the acceleration of \(P\) when the stretched length of the string is \(\frac { 3 } { 2 } a\).
    \includegraphics[max width=\textwidth, alt={}, center]{5e95e0c9-d47d-4f2b-89da-ab949b9661f4-04_552_1059_264_502} A smooth cylinder is fixed to a rough horizontal surface with its axis of symmetry horizontal. A uniform rod \(A B\), of length \(4 a\) and weight \(W\), rests against the surface of the cylinder. The end \(A\) of the rod is in contact with the horizontal surface. The vertical plane containing the rod \(A B\) is perpendicular to the axis of the cylinder. The point of contact between the rod and the cylinder is \(C\), where \(A C = 3 a\). The angle between the rod and the horizontal surface is \(\theta\) where \(\tan \theta = \frac { 3 } { 4 }\) (see diagram). The coefficient of friction between the rod and the horizontal surface is \(\frac { 6 } { 7 }\). A particle of weight \(k W\) is attached to the rod at \(B\). The rod is about to slip. The normal reaction between the rod and the cylinder is \(N\).
Question 6
View details
6
\includegraphics[max width=\textwidth, alt={}, center]{5e95e0c9-d47d-4f2b-89da-ab949b9661f4-10_426_1191_267_438} Two uniform smooth spheres \(A\) and \(B\) of equal radii have masses \(m\) and \(k m\) respectively. The two spheres are moving on a horizontal surface with speeds \(u\) and \(\frac { 5 } { 8 } u\) respectively. Immediately before the spheres collide, \(A\) is travelling along the line of centres, and \(B\) 's direction of motion makes an angle \(\alpha\) with the line of centres (see diagram). The coefficient of restitution between the spheres is \(\frac { 2 } { 3 }\) and \(\tan \alpha = \frac { 3 } { 4 }\). After the collision, the direction of motion of \(B\) is perpendicular to the line of centres.
  1. Find the value of \(k\).
  2. Find the loss in the total kinetic energy as a result of the collision.