3 A particle \(P\) is moving in a horizontal straight line. Initially \(P\) is at the point \(O\) on the line and is moving with velocity \(25 \mathrm {~ms} ^ { - 1 }\). At time \(t \mathrm {~s}\) after passing through \(O\), the acceleration of \(P\) is \(\frac { 4000 } { ( 5 t + 4 ) ^ { 3 } } \mathrm {~ms} ^ { - 2 }\) in the direction \(P O\). The displacement of \(P\) from \(O\) at time \(t\) is \(x \mathrm {~m}\).
Find an expression for \(x\) in terms of \(t\).
\includegraphics[max width=\textwidth, alt={}, center]{c486c59a-2493-4dd3-bf1e-dde57fe744d9-06_894_809_260_628}
An object is composed of a hemispherical shell of radius \(2 a\) attached to a closed hollow circular cylinder of height \(h\) and base radius \(a\). The hemispherical shell and the hollow cylinder are made of the same uniform material. The axes of symmetry of the shell and the cylinder coincide. \(A B\) is a diameter of the lower end of the cylinder (see diagram).
- Find, in terms of \(a\) and \(h\), an expression for the distance of the centre of mass of the object from \(A B\). [4]
The object is placed on a rough plane which is inclined to the horizontal at an angle \(\theta\), where \(\tan \theta = \frac { 2 } { 3 }\). The object is in equilibrium with \(A B\) in contact with the plane and lying along a line of greatest slope of the plane. - Find the set of possible values of \(h\), in terms of \(a\).
\includegraphics[max width=\textwidth, alt={}, center]{c486c59a-2493-4dd3-bf1e-dde57fe744d9-08_629_1358_269_367}
A light inextensible string \(A B\) passes through two small holes \(C\) and \(D\) in a smooth horizontal table where \(A C = 3 a\) and \(D B = a\). A particle of mass \(m\) is attached at the end \(A\) and moves in a horizontal circle with angular velocity \(\omega\). A particle of mass \(\frac { 3 } { 4 } m\) is attached to the end \(B\) and moves in a horizontal circle with angular velocity \(k \omega\). \(A C\) makes an angle \(\theta\) with the downward vertical and \(D B\) makes an angle \(\theta\) with the horizontal (see diagram).
Find the value of \(k\).