CAIE M2 (Mechanics 2) 2019 November

Question 2
View details
2 A particle is projected from a point on horizontal ground with speed \(15 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) at an angle of \(\theta ^ { \circ }\) above the horizontal. The particle strikes the ground 2 s after projection.
  1. Find \(\theta\).
    \includegraphics[max width=\textwidth, alt={}, center]{4cd525d5-d59b-4ab9-85a3-fc3d97fd09fc-03_67_1571_438_328}
  2. Calculate the time after projection at which the direction of motion of the particle is \(20 ^ { \circ }\) below the horizontal.
Question 3
View details
3 A smooth horizontal surface has two fixed points \(O\) and \(A\) which are 0.8 m apart. A particle \(P\) of mass 0.25 kg is projected with velocity \(3 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) horizontally from \(A\) in the direction away from \(O\). The velocity of \(P\) is \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\) when the displacement of \(P\) from \(O\) is \(x \mathrm {~m}\). A force of magnitude \(k v ^ { 2 } x ^ { - 2 } \mathrm {~N}\) opposes the motion of \(P\).
  1. Show that \(v \frac { \mathrm {~d} v } { \mathrm {~d} x } = - 4 k v ^ { 2 } x ^ { - 2 }\).
  2. Express \(v\) in terms of \(k\) and \(x\).
Question 4
View details
4 A small ball \(B\) is projected with speed \(30 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) at an angle of \(60 ^ { \circ }\) above the horizontal from a point \(O\). At time \(t \mathrm {~s}\) after projection the horizontal and vertically upwards displacements of \(B\) from \(O\) are \(x \mathrm {~m}\) and \(y \mathrm {~m}\) respectively.
  1. Express \(x\) and \(y\) in terms of \(t\) and hence find the equation of the trajectory of the ball.
  2. Find the value of \(x\) for which \(O B\) makes an angle of \(45 ^ { \circ }\) above the horizontal.
Question 5
View details
5 A particle \(P\) of mass 0.3 kg is attached to one end of a light elastic string of natural length 0.6 m and modulus of elasticity 9 N . The other end of the string is attached to a fixed point \(O\) on a smooth plane inclined at \(30 ^ { \circ }\) to the horizontal. \(O A\) is a line of greatest slope of the plane with \(A\) below the level of \(O\) and \(O A = 0.8 \mathrm {~m}\). The particle \(P\) is released from rest at \(A\).
  1. Find the initial acceleration of \(P\).
  2. Find the greatest speed of \(P\).
    \(6 \quad A\) and \(B\) are two fixed points on a vertical axis with \(A 0.6 \mathrm {~m}\) above \(B\). A particle \(P\) of mass 0.3 kg is attached to \(A\) by a light inextensible string of length 0.5 m . The particle \(P\) is attached to \(B\) by a light elastic string with modulus of elasticity 46 N . The particle \(P\) moves with constant angular speed \(8 \mathrm { rad } \mathrm { s } ^ { - 1 }\) in a horizontal circle with centre at the mid-point of \(A B\).
  3. Find the speed of \(P\).
  4. Calculate the tension in the string \(B P\) and hence find the natural length of this string.
    \includegraphics[max width=\textwidth, alt={}, center]{4cd525d5-d59b-4ab9-85a3-fc3d97fd09fc-10_540_574_260_781}
    \(A B C\) is the cross-section through the centre of mass of a uniform prism which rests with \(A B\) on a rough horizontal surface. \(A B = 0.4 \mathrm {~m}\) and \(C\) is 0.9 m above the surface (see diagram). The prism is on the point of toppling about its edge through \(B\).
  5. Show that angle \(B A C = 48.4 ^ { \circ }\), correct to 3 significant figures.
    A force of magnitude 18 N acting in the plane of the cross-section and perpendicular to \(A C\) is now applied to the prism at \(C\). The prism is on the point of rotating about its edge through \(A\).
  6. Calculate the weight of the prism.
  7. Given also that the prism is on the point of slipping, calculate the coefficient of friction between the prism and the surface.
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.