CAIE M2 (Mechanics 2) 2003 November

Question 1
View details
1 A railway engine of mass 50000 kg travels at a constant speed of \(25 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) on a horizontal circular track of radius 1250 m . Find the magnitude of the horizontal force on the engine.
Question 2
View details
2 \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{be83d46f-bf5b-4382-b424-bb5067626adc-2_376_569_559_466} \captionsetup{labelformat=empty} \caption{Fig. 1}
\end{figure} \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{be83d46f-bf5b-4382-b424-bb5067626adc-2_485_456_450_1226} \captionsetup{labelformat=empty} \caption{Fig. 2}
\end{figure} A uniform solid cone has height 20 cm and base radius 10 cm . It is placed with its axis vertical on a rough horizontal plane (see Fig. 1). The plane is slowly tilted and the cone remains in equilibrium until the angle of inclination of the plane reaches \(\theta ^ { \circ }\), when the cone begins to topple without sliding (see Fig. 2).
  1. Find the value of \(\theta\).
  2. What can you say about the value of the coefficient of friction between the cone and the plane?
Question 3
View details
3
\includegraphics[max width=\textwidth, alt={}, center]{be83d46f-bf5b-4382-b424-bb5067626adc-2_433_446_1635_854} One end of a light elastic spring, of natural length 0.4 m and modulus of elasticity 88 N , is attached to a fixed point \(O\). A particle \(P\) of mass 0.2 kg is attached to the other end of the spring and is held, with the spring compressed, at a point 0.3 m vertically above \(O\), as shown in the diagram. \(P\) is now released from rest and moves vertically upwards.
  1. Find the initial acceleration of \(P\).
  2. Find the initial elastic potential energy of the spring.
  3. Find the speed of \(P\) when the distance \(O P\) is 0.4 m . \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{be83d46f-bf5b-4382-b424-bb5067626adc-3_362_657_269_744} \captionsetup{labelformat=empty} \caption{Fig. 1}
    \end{figure} Fig. 1 shows a uniform lamina \(A B C D\) with dimensions \(A B = 15.5 \mathrm {~cm} , B C = 8 \mathrm {~cm}\) and \(C D = 9.5 \mathrm {~cm}\). Angles \(A B C\) and \(B C D\) are right angles.
Question 4
View details
  1. Show that the distance of the centre of mass of the lamina from the side \(B C\) is 6.37 cm . \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{be83d46f-bf5b-4382-b424-bb5067626adc-3_671_608_1050_772} \captionsetup{labelformat=empty} \caption{Fig. 2}
    \end{figure} The lamina is smoothly hinged to a wall at \(A\) and is supported, with \(A B\) horizontal, by a light wire attached at \(B\). The other end of the wire is attached to a point on the wall, vertically above \(A\), such that the wire makes an angle of \(30 ^ { \circ }\) with \(A B\) (see Fig. 2). The mass of the lamina is 8 kg . Find
  2. the tension in the wire,
  3. the magnitude of the vertical component of the force acting on the lamina at \(A\).
Question 5
View details
5 A stone is projected from a point on horizontal ground with a speed of \(20 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) at an angle of \(\alpha ^ { \circ }\) above the horizontal. The stone is moving horizontally when it hits a vertical wall at a point 7.2 m above the ground.
  1. Find the value of \(\alpha\). After rebounding at right angles from the wall the speed of the stone is halved. Find
  2. the distance from the wall of the point at which the stone hits the ground,
  3. the angle which the direction of motion of the stone makes with the horizontal, immediately before the stone hits the ground.
Question 6
View details
6 A cyclist and his machine have a total mass of 80 kg . The cyclist starts from rest and rides from the bottom to the top of a straight slope inclined at an angle \(\theta\) to the horizontal, where \(\sin \theta = 0.1\). The cyclist exerts a constant force of magnitude 120 N . There is a resisting force of magnitude \(8 v \mathrm {~N}\) acting on the cyclist, where \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\) is the cyclist's speed at time \(t \mathrm {~s}\) after the start.
  1. Show that \(\left( \frac { 1 } { 5 - v } \right) \frac { \mathrm { d } v } { \mathrm {~d} t } = \frac { 1 } { 10 }\).
  2. Solve this differential equation and hence show that \(v = 5 \left( 1 - \mathrm { e } ^ { - \frac { 1 } { 10 } t } \right)\).
  3. Given that the cyclist takes 20 s to reach the top of the slope, find the length of the slope.