4
\includegraphics[max width=\textwidth, alt={}, center]{16a5835e-002f-4c49-aacf-cda41c37f214-2_711_643_900_753}
The diagram shows a pyramid \(O A B C\) in which the edge \(O C\) is vertical. The horizontal base \(O A B\) is a triangle, right-angled at \(O\), and \(D\) is the mid-point of \(A B\). The edges \(O A , O B\) and \(O C\) have lengths of 8 units, 6 units and 10 units respectively. The unit vectors \(\mathbf { i } , \mathbf { j }\) and \(\mathbf { k }\) are parallel to \(\overrightarrow { O A } , \overrightarrow { O B }\) and \(\overrightarrow { O C }\) respectively.
- Express each of the vectors \(\overrightarrow { O D }\) and \(\overrightarrow { C D }\) in terms of \(\mathbf { i } , \mathbf { j }\) and \(\mathbf { k }\).
- Use a scalar product to find angle ODC.