6
\includegraphics[max width=\textwidth, alt={}, center]{9d377c95-09b8-4893-b29f-8517a5016e8b-3_151_949_1206_598}
\(O\) and \(A\) are fixed points on a horizontal surface, with \(O A = 0.5 \mathrm {~m}\). A particle \(P\) of mass 0.2 kg is projected horizontally with speed \(3 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) from \(A\) in the direction \(O A\) and moves in a straight line (see diagram). At time \(t \mathrm {~s}\) after projection, the velocity of \(P\) is \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and its displacement from \(O\) is \(x \mathrm {~m}\). The coefficient of friction between the surface and \(P\) is 0.5 , and a force of magnitude \(\frac { 0.4 } { x ^ { 2 } } \mathrm {~N}\) acts on \(P\) in the direction \(P O\).
- Show that, while the particle is in motion, \(v \frac { \mathrm {~d} v } { \mathrm {~d} x } = - \left( 5 + \frac { 2 } { x ^ { 2 } } \right)\).
- Calculate the distance travelled by \(P\) before it comes to rest, and show that \(P\) does not subsequently move.