CAIE M2 (Mechanics 2) 2010 June

Question 1
View details
1 A particle is projected horizontally with speed \(12 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) from the top of a high cliff. Find the direction of motion of the particle after 2 s .
Question 2
View details
2
\includegraphics[max width=\textwidth, alt={}, center]{5a2248f6-3ef9-4e69-90cf-4d6a2351be14-2_319_908_438_616} A uniform solid cone has height 20 cm and base radius \(4 \mathrm {~cm} . P Q\) is a diameter of the base of the cone. The cone is held in equilibrium, with \(P\) in contact with a horizontal surface and \(P Q\) vertical, by a force applied at \(Q\). This force has magnitude 3 N and acts parallel to the axis of the cone (see diagram). Calculate the mass of the cone.
Question 3
View details
3 Two particles \(P\) and \(Q\) are projected simultaneously with speed \(40 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) from a point \(O\) on a horizontal plane. Both particles subsequently pass at different times through the point \(A\) which has horizontal and vertically upward displacements from \(O\) of 40 m and 15 m respectively.
  1. By considering the equation of the trajectory of a projectile, show that each angle of projection satisfies the equation \(\tan ^ { 2 } \theta - 8 \tan \theta + 4 = 0\).
  2. Calculate the distance between the points at which \(P\) and \(Q\) strike the plane.
Question 4
View details
4
\(A B\) is the diameter of a uniform semicircular lamina which has radius 0.3 m and mass 0.4 kg . The lamina is hinged to a vertical wall at \(A\) with \(A B\) inclined at \(30 ^ { \circ }\) to the vertical. One end of a light inextensible string is attached to the lamina at \(B\) and the other end of the string is attached to the wall vertically above \(A\). The lamina is in equilibrium in a vertical plane perpendicular to the wall with the string horizontal (see diagram).
  1. Show that the tension in the string is 2.00 N correct to 3 significant figures.
  2. Find the magnitude and direction of the force exerted on the lamina by the hinge.
    \includegraphics[max width=\textwidth, alt={}, center]{5a2248f6-3ef9-4e69-90cf-4d6a2351be14-3_956_540_258_804} A small ball \(B\) of mass 0.4 kg is attached to fixed points \(P\) and \(Q\) on a vertical axis by two light inextensible strings of equal length. Both strings are taut and each is inclined at \(30 ^ { \circ }\) to the vertical. The ball moves in a horizontal circle (see diagram).
Question 5
View details
  1. It is given that when the ball moves with speed \(6 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) the tension in the string \(Q B\) is three times the tension in the string \(P B\). Calculate the radius of the circle. The ball now moves along this circular path with the minimum possible speed.
  2. State the tension in the string \(P B\) in this case, and find the speed of the ball.
Question 6
View details
6 A particle \(P\) of mass 0.5 kg moves in a straight line on a smooth horizontal surface. At time \(t \mathrm {~s}\), the displacement of \(P\) from a fixed point on the line is \(x \mathrm {~m}\) and the velocity of \(P\) is \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\). It is given that when \(t = 0 , x = 0\) and \(v = 9\). The motion of \(P\) is opposed by a force of magnitude \(3 \sqrt { } v \mathrm {~N}\).
  1. By solving an appropriate differential equation, show that \(v = ( 27 - 9 x ) ^ { \frac { 2 } { 3 } }\).
  2. Calculate the value of \(x\) when \(t = 0.5\).
Question 7
View details
7 One end of a light elastic string of natural length 3 m and modulus of elasticity 24 N is attached to a fixed point \(O\). A particle \(P\) of mass 0.4 kg is attached to the other end of the string. \(P\) is projected vertically downwards from \(O\) with initial speed \(2 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). When the extension of the string is \(x \mathrm {~m}\) the speed of \(P\) is \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
  1. Show that \(v ^ { 2 } = 64 + 20 x - 20 x ^ { 2 }\).
  2. Find the greatest speed of the particle.
  3. Calculate the greatest tension in the string.