5 A cyclist and her bicycle have a total mass of 84 kg . She works at a constant rate of \(P \mathrm {~W}\) while moving on a straight road which is inclined to the horizontal at an angle \(\theta\), where \(\sin \theta = 0.1\). When moving uphill, the cyclist's acceleration is \(1.25 \mathrm {~m} \mathrm {~s} ^ { - 2 }\) at an instant when her speed is \(3 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). When moving downhill, the cyclist's acceleration is \(1.25 \mathrm {~m} \mathrm {~s} ^ { - 2 }\) at an instant when her speed is \(10 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). The resistance to the cyclist's motion, whether the cyclist is moving uphill or downhill, is \(R \mathrm {~N}\). Find the values of \(P\) and \(R\).