OCR Further Discrete (Further Discrete) 2017 Specimen

Question 1
View details
1 Fiona is a mobile hairdresser. One day she needs to visit five clients, A to E, starting and finishing at her own house at F . She wants to find a suitable route that does not involve her driving too far.
  1. Which standard network problem does Fiona need to solve? The shortest distances between clients, in km, are given in the matrix below.
    ABCDE
    A-12864
    B12-10810
    C810-1310
    D6813-10
    E4101010-
  2. Use the copy of the matrix in the Printed Answer Booklet to construct a minimum spanning tree for these five client locations.
    State the algorithm you have used, show the order in which you build your tree and give its total weight. Draw your minimum spanning tree. The distance from Fiona's house to each client, in km, is given in the table below.
    ABCDE
    F211975
  3. Use this information together with your answer to part (ii) to find a lower bound for the length of Fiona's route.
  4. (a) Find all the cycles that result from using the nearest neighbour method, starting at F .
    (b) Use these to find an upper bound for the length of Fiona's route.
  5. Fiona wants to drive less than 35 km . Using the information in your answers to parts (iii) and (iv) explain whether or not a route exists which is less than 35 km in length.
Question 2
View details
2 Kirstie has bought a house that she is planning to renovate. She has broken the project into a list of activities and constructed an activity network, using activity on arc.
Activity
\(A\)Structural survey
\(B\)Replace damp course
\(C\)Scaffolding
\(D\)Repair brickwork
\(E\)Repair roof
\(F\)Check electrics
\(G\)Replaster walls
Activity
\(H\)Planning
\(I\)Build extension
\(J\)Remodel internal layout
\(K\)Kitchens and bathrooms
\(L\)Decoration and furnishing
\(M\)Landscape garden
\includegraphics[max width=\textwidth, alt={}, center]{27438ff9-40d5-415e-b054-2007ea4dd6b8-03_876_1739_1037_212}
  1. Construct a cascade chart for the project, showing the float for each non-critical activity.
  2. Calculate the float for remodelling the internal layout stating how much of this is independent float and how much is interfering float. Kirstie needs to supervise the project. This means that she cannot allow more than three activities to happen on any day.
  3. Describe how Kirstie should organise the activities so that the project is completed in the minimum project completion time and no more than three activities happen on any day.
Question 4
View details
4 The table shows the pay-off matrix for player \(A\) in a two-person zero-sum game between \(A\) and \(B\). \begin{table}[h]
\captionsetup{labelformat=empty} \caption{Player \(A\)}
Strategy \(X\)Strategy \(Y\)Strategy \(Z\)
Strategy \(P\)45- 4
Strategy \(Q\)3- 12
Strategy \(R\)402
\end{table}
  1. Find the play-safe strategy for player \(A\) and the play-safe strategy for player \(B\). Use the values of the play-safe strategies to determine whether the game is stable or unstable.
  2. If player \(B\) knows that player \(A\) will use their play-safe strategy, which strategy should player \(B\) use?
  3. Suppose that the value in the cell where both players use their play-safe strategies can be changed, but all other entries are unchanged. Show that there is no way to change this value that would make the game stable.
  4. Suppose, instead, that the value in one cell can be changed, but all other entries are unchanged, so that the game becomes stable. Identify a suitable cell and write down a new pay-off value for that cell which would make the game stable.
  5. Show that the zero-sum game with the new pay-off value found in part (iv) has a Nash equilibrium and explain what this means for the players.