1 A body, \(P\), of mass 2 kg moves under the action of a single force \(\mathbf { F } \mathrm { N }\). At time \(t \mathrm {~s}\), the velocity of the body is \(\mathbf { v } \mathrm { m } \mathrm { s } ^ { - 1 }\), where
$$\mathbf { v } = \left( t ^ { 2 } - 3 \right) \mathbf { i } + \frac { 5 } { 2 t + 1 } \mathbf { j } \text { for } t \geq 2 .$$
- Obtain \(\mathbf { F }\) in terms of \(t\).
- Calculate the rate at which the force \(\mathbf { F }\) is working at \(t = 4\).
- By considering the change in kinetic energy of \(P\), calculate the work done by the force \(\mathbf { F }\) during the time interval \(2 \leq t \leq 4\).