8 A point \(O\) is situated a distance \(h\) above a smooth horizontal plane, and a particle \(A\) of mass \(m\) is attached to \(O\) by a light inextensible string of length \(h\). A particle \(B\) of mass \(2 m\) is at rest on the plane, directly below \(O\), and is attached to a point \(C\) on the plane, where \(B C = l\), by a light inextensible string of length \(l . A\) is released from rest with the string \(O A\) taut and making an acute angle \(\theta\) with the downward vertical (see diagram).
\includegraphics[max width=\textwidth, alt={}, center]{19c3a9d0-15b6-4dd0-a00b-577c3fd2cf52-5_604_1137_486_552}
\(A\) moves in a vertical plane perpendicular to \(C B\) and collides directly with \(B\). As a result of this collision, \(A\) is brought to rest and \(B\) moves on the plane in a horizontal circle with centre \(C\). After \(B\) has made one complete revolution the particles collide again.
- Show that, on the next occasion that \(A\) comes to rest, the string \(O A\) makes an angle \(\phi\) with the downward vertical through \(O\), where \(\cos \phi = \frac { 3 + \cos \theta } { 4 }\).
\(A\) and \(B\) collide again when \(A O\) is next vertical. - Find the percentage of the original energy of the system that remains immediately after this collision.
- Explain why the total momentum of the particles immediately before the first collision is the same as the total momentum of the particles immediately after the second collision.
- Explain why the total momentum of the particles immediately before the first collision is different from the total momentum of the particles immediately after the third collision.
\section*{OCR}
\section*{Oxford Cambridge and RSA}