6 A fairground game involves a player kicking a ball, \(B\), from rest so as to project it with a horizontal velocity of magnitude \(u \mathrm {~m} \mathrm {~s} ^ { - 1 }\). The ball is attached to one end of a light rod of length \(l \mathrm {~m}\). The other end of the rod is smoothly hinged at a fixed point \(O\) so that \(B\) can only move in the vertical plane which contains \(O\), a fixed barrier and a bell which is fixed \(l \mathrm {~m}\) vertically above \(O\).
Initially \(B\) is vertically below \(O\). The barrier is positioned so that when \(B\) collides directly with the barrier, \(O B\) makes an angle \(\theta\) with the downwards vertical through \(O\) (see diagram).
\includegraphics[max width=\textwidth, alt={}, center]{bf86ac88-0fd1-4d49-a705-9b8d06fbac2a-4_643_659_584_724}
The coefficient of restitution between \(B\) and the barrier is \(e . B\) rebounds from the barrier, passes through its original position and continues on a circular path towards the bell. The bell will only ring if the ball strikes it with a speed of at least \(V \mathrm {~m} \mathrm {~s} ^ { - 1 }\). The player wins the game if the player causes the bell to ring having kicked \(B\) so that it first collides with the barrier. You may assume that \(B\) and the bell are small and that the barrier has negligible thickness.
Show that, whatever the position of the barrier, the player cannot win the game if \(u ^ { 2 } < 4 g l + \frac { V ^ { 2 } } { e ^ { 2 } }\).
\section*{END OF QUESTION PAPER}