| Book | A | B | C | D | E | F | G | H | I | J | K | L |
| \(x\) | 0.95 | 0.65 | 0.70 | 0.90 | 0.55 | 1.40 | 1.50 | 0.50 | 1.15 | 0.35 | 0.20 | 0.35 |
| \(y\) | 6.06 | 7.00 | 2.00 | 5.87 | 4.00 | 5.36 | 7.19 | 2.50 | 3.00 | 8.29 | 1.37 | 2.00 |
| Abbreviations used in the mark scheme | Meaning |
| dep* | Mark dependent on a previous mark, indicated by *. The * may be omitted if only one previous M mark |
| cao | Correct answer only |
| ое | Or equivalent |
| rot | Rounded or truncated |
| soi | Seen or implied |
| www | Without wrong working |
| AG | Answer given |
| awrt | Anything which rounds to |
| BC | By Calculator |
| DR | This question included the instruction: In this question you must show detailed reasoning. |
| Mark | AO |
| ||||||||||||||||||
| \multirow{2}{*}{} | \multirow{2}{*}{} | \multirow{2}{*}{} | \multirow[t]{2}{*}{
| M1 | 3.3 | Square root correct Awrt 1.96 used, can be implied | \multirow{2}{*}{Allow e.g. (49.30, 56.9)} | ||||||||||||||
| A1 [4] | 3.4 | Both, only these numbers (4 sf needed at least once) | |||||||||||||||||||
| 2 | (a) | (i) | The points do not lie very close to a straight line | B1 [1] | 1.1 | Or equivalent. Must refer to diagram, not just to "correlation" | Ignore extras unless wrong | ||||||||||||||
| \multirow{3}{*}{} | \multirow{3}{*}{} | \multirow[t]{3}{*}{(ii)} | \(\mathrm { H } _ { 0 } : \rho = 0 , \mathrm { H } _ { 1 } : \rho > 0\), where \(\rho\) is the population pmcc between prices in 1972 and prices in 2018 | B2 | 1.1 2.5 |
| \(\mathrm { H } _ { 0 }\) : no correlation, \(\mathrm { H } _ { 1 }\) : positive correlation: B 1 | ||||||||||||||
| FT on CV 0.5760 only | ||||||||||||||||||||
|
|
| |||||||||||||||||||
| 2 | (b) | 0.650 |
|
| Full marks for correct answer by any method | SC: if B0 allow B1 for any 3 of 8.85, 46.35, 8.8725, 241.7331, 43.153 | |||||||||||||||
| Question | Answer | Mark | AO | Guidance | |||||||||||||||
| \multirow{2}{*}{3} | \multirow{2}{*}{(a)} | \multirow{2}{*}{} | \multirow[t]{2}{*}{
| \multirow[t]{2}{*}{
| "Events occur independently and at constant average rate": B0 | ||||||||||||||
|
| ||||||||||||||||||
| 3 | (b) | (i) | 0.146(223) BC |
|
|
| |||||||||||||
| 3 | (ii) | 0.133(372) BC |
|
|
| ||||||||||||||
| 3 | (c) |
|
|
|
| Allow this M1 also from \(\lambda = 7.2 ( 0.187,0.110,0.189 )\) | |||||||||||||
| 3 | (d) | Sales of CD players and integrated systems need to be independent |
| 1.1 | Need "independent" or "not related" clearly referred to the two types of machine. | Not just "purchases independent" or "distributions independent" | |||||||||||||
| \multirow{2}{*}{3} | \multirow{2}{*}{(e)} | \multirow{2}{*}{} | \multirow[t]{2}{*}{B1 [1]} | \multirow[t]{2}{*}{3.5b} | Any reason for nonindependence of sales of CD players and integrated sound systems | Can get B0B1 provided they are focussing on independence | |||||||||||||
| e.g. CDs/CD players, or assuming that integrated systems don't include CD players | ||||||||||||||||||
| Question | Answer | Mark | AO | Guidance | |||||||||||||||
| 4 | (a) | \(\begin{aligned} | \int _ { 1 } ^ { \infty } k x ^ { - n } \mathrm {~d} x = \left[ \frac { k } { ( 1 - n ) x ^ { n - 1 } } \right] _ { 1 } ^ { \infty } | ||||||||||||||||
| = \frac { k } { n - 1 } = 1 \text { so } k = n - 1 \end{aligned}\) |
|
|
| Don't need full details of \(\lim ( a \rightarrow \infty )\) | |||||||||||||||
| 4 | (b) | (i) | \(\begin{aligned} | \int 3 x ^ { - 4 } \mathrm {~d} x = - \frac { 1 } { x ^ { 3 } } + c | |||||||||||||||
| x = 1 , \mathrm {~F} ( x ) = 0 \text { so } c = 1 . \text { Hence } 1 - x ^ { - 3 } | |||||||||||||||||||
| \mathrm {~F} ( x ) = \begin{cases} 0 | x < 1 | ||||||||||||||||||
| 1 - \frac { 1 } { x ^ { 3 } } | x \geq 1 \end{cases} \end{aligned}\) |
|
|
|
| ||||||||||||||
| 4 | (ii) | \(\begin{aligned} | \frac { \mathrm { P } [ ( X > 7 ) \cap ( X > 5 ) ] } { \mathrm { P } ( X > 5 ) } = \frac { \mathrm { P } ( X > 7 ) } { \mathrm { P } ( X > 5 ) } | ||||||||||||||||
| = \frac { 1 - \mathrm { F } ( 7 ) } { 1 - \mathrm { F } ( 5 ) } | |||||||||||||||||||
| = \frac { 125 } { 343 } \text { or } 0.364 ( 431 \ldots ) \end{aligned}\) |
|
|
|
| |||||||||||||||
| Question | Answer | Mark | AO | Guidance | ||||||
| \multirow{5}{*}{4} | \multirow{5}{*}{(c)} |
| M1* B1 | 2.1 1.1 |
| SC: \(\mathrm { E } \left( X ^ { 2 } \right) = \frac { n - 1 } { n - 3 }\), M1B1 \(\mathrm { E } ( X ) = \frac { n - 1 } { n - 2 } \Rightarrow n \neq 2\) or 3 : (not valid, must consider ln if \(n = 2\) or 3 ): B0 | ||||
| No marks just for this unless last 3 marks all zero, then if this (or for \(n = 2\) ) is shown, award SC B1 Make deduction based on convergence, ft | ||||||||||
| Infinite integral does not converge if \(3 - n \geq 0\) | *dep M1 | 2.2a | No limits used: M0B1M0B0 | |||||||
| If \(n \geq 4\) then \(\mathrm { E } ( X ) = \left[ \frac { k x ^ { 2 - n } } { ( 2 - n ) } \right] _ { 1 } ^ { \infty }\) converges | B1 | 2.3 | Consider convergence of \(\mathrm { E } ( X )\) | SC: \(\operatorname { Var } ( X ) < 0\) when \(n < 3\) : M1B1M1 (B0) A0 | ||||||
| Therefore \(\operatorname { Var } ( X )\) is not defined if and only if \(n = 2\) or 3 . | A1 [5] | 2.2a | Shown not defined for \(n = 2\) or 3 and only for those | But no need to state "if and only if" | ||||||