| Abbreviations used in the mark scheme | Meaning |
| dep* | Mark dependent on a previous mark, indicated by *. The * may be omitted if only one previous M mark |
| cao | Correct answer only |
| ое | Or equivalent |
| rot | Rounded or truncated |
| soi | Seen or implied |
| www | Without wrong working |
| AG | Answer given |
| awrt | Anything which rounds to |
| BC | By Calculator |
| DR | This question included the instruction: In this question you must show detailed reasoning. |
| Question | Answer | Marks | AOs | Guidance | |||||||||||||||||||||
| 1 | (a) | \(\begin{aligned} | 15000 \times 6 = \frac { 1 } { 2 } \times 800 v ^ { 2 } | ||||||||||||||||||||||
| v = \sqrt { 225 } = 15 \mathrm {~m} \mathrm {~s} ^ { - 1 } \end{aligned}\) |
|
| Finding energy input using \(W = P t\) and equating to KE gained | \(\begin{aligned} | \text { Or } \frac { 15000 } { v } = 800 \frac { \mathrm {~d} v } { \mathrm {~d} t } | ||||||||||||||||||||
| \Rightarrow \frac { 75 } { 2 } \int _ { 0 } ^ { 6 } \mathrm {~d} t = \int _ { 0 } ^ { v } 2 v \mathrm {~d} v \text { oe } \end{aligned}\) | |||||||||||||||||||||||||
| 1 | (b) | Considering forces along the road: \(800 g \sin \theta + 150 = D\) \(15000 = D v\) \(v = \frac { 15000 } { 800 g \times \frac { 1 } { 20 } + 150 } = \text { awrt } 27.7 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) |
|
|
|
| |||||||||||||||||||
| 1 | (c) |
|
|
|
| ||||||||||||||||||||
| Question | Answer | Marks | AOs | Guidance | ||
| \multirow[t]{5}{*}{2} | \multirow[t]{5}{*}{(a)} | \(\frac { 1 } { 2 } m \times 3.5 ^ { 2 } = \frac { 1 } { 2 } m v ^ { 2 } + m g \times 0.8 \left( 1 - \cos \frac { 1 } { 3 } \pi \right)\) | M1 | 3.1b | Conservation of energy (could be general angle for RHS) | |
| \(v ^ { 2 } = 3.5 ^ { 2 } - 0.8 g = 4.41\) | A1 | 1.1 | Or \(v = 2.1\) | |||
| \(T - 1.2 g \cos \frac { 1 } { 3 } \pi = \frac { 1.2 v ^ { 2 } } { 0.8 }\) | M1 | 3.1b | Resolving weight and use of NII with correct centripetal acceleration | |||
| So tension when string breaks is awrt 12.5 N | A1 | 3.2a | ||||
| [4] | ||||||
| Question | Answer | Marks | AOs | Guidance | ||||||||||||||||||||||||||||||
| \multirow[t]{3}{*}{2} | \multirow[t]{3}{*}{(b)} |
|
|
|
| \(\begin{aligned} | \frac { \sqrt { 331 } + 3 \sqrt { 3 } } { 28 } | |||||||||||||||||||||||||||
| \frac { 3 \sqrt { 331 } + 9 \sqrt { 3 } } { 80 } \end{aligned}\) | ||||||||||||||||||||||||||||||||||
|
|
| \(\frac { 3 \sqrt { 331 } + 9 \sqrt { 3 } } { 80 }\) | |||||||||||||||||||||||||||||||
| [7] | ||||||||||||||||||||||||||||||||||
| Question | Answer | Marks | AOs | Guidance | ||||||||||||
| 3 | (a) | \(\begin{aligned} | { [ F ] = [ m a ] = \mathrm { MLT } ^ { - 2 } } | |||||||||||||
| { [ P ] = \frac { [ F ] } { [ A ] } = \mathrm { MLT } ^ { - 2 } \mathrm {~L} ^ { - 2 } = \mathrm { ML } ^ { - 1 } \mathrm {~T} ^ { - 2 } } | ||||||||||||||||
| { [ R ] = [ F ] [ d ] } | ||||||||||||||||
| { [ R ] = \mathrm { MLT } ^ { - 2 } \mathrm {~L} = \mathrm { ML } ^ { 2 } \mathrm {~T} ^ { - 2 } } \end{aligned}\) |
|
| Determining dimensions of energy | |||||||||||||
| 3 | (b) | \(\begin{aligned} | \left( \mathrm { ML } ^ { - 1 } \mathrm {~T} ^ { - 2 } \right) ^ { \alpha } \mathrm { L } ^ { 3 \beta } = \mathrm { ML } ^ { 2 } \mathrm {~T} ^ { - 2 } | |||||||||||||
| \mathrm { M } ^ { \alpha } = \mathrm { M } \Rightarrow \alpha = 1 | ||||||||||||||||
| \mathrm {~L} : - \alpha + 3 \beta = 2 \Rightarrow \beta = 1 \text { (AGG) } \end{aligned}\) |
|
| Using their dimensions or similarly with T | \(n\) and \(\theta\) dimensionless | ||||||||||||
| 3 | (c) | \(\begin{aligned} | P = \frac { 5 \times 8.31 \times 300 } { 0.03 } | |||||||||||||
| 415500 \mathrm { Nm } ^ { - 2 } \end{aligned}\) |
|
| Correctly substituting values | With their \(\alpha\) and \(\beta\) | ||||||||||||
| 3 | (d) | \(\begin{aligned} | { [ b ] = \mathrm { L } ^ { 3 } } | |||||||||||||
| { [ a ] = \mathrm { ML } ^ { - 1 } \mathrm {~T} ^ { - 2 } \left( \mathrm {~L} ^ { 3 } \right) ^ { 2 } } | ||||||||||||||||
| { [ a ] = \mathrm { ML } ^ { 5 } \mathrm {~T} ^ { - 2 } } \end{aligned}\) |
|
| Using equality of \(\left[ a / V ^ { 2 } \right]\) and \([ P ]\) | With \(n\) dimensionless | ||||||||||||
| 3 | (e) |
|
|
| Correctly substituting values | With their \(\alpha\) and \(\beta\) | ||||||||||
| 3 | (f) |
|
|
| Ignore units | OR from \(V - n b < 0\), so since \(R , \theta , n\) and \(V\) are all positive \(P < 0\) | ||||||||||