6.
A sequence \(t _ { 1 } , t _ { 2 } , t _ { 3 } , t _ { 4 } , t _ { 5 } , \ldots\) is given by
$$t _ { n + 1 } = a t _ { n } + 3 n + 2 , \quad t \in \mathbb { N } , \quad t _ { 1 } = - 2 ,$$
where \(a\) is a non zero constant.
a) Given that \(\sum _ { r = 1 } ^ { 3 } \left( r ^ { 3 } + t _ { r } \right) = 12\), determine the possible values of \(a\).
b) Evaluate \(\sum _ { r = 8 } ^ { 31 } \left( t _ { r + 1 } - a t _ { r } \right)\).