SPS SPS FM Pure (SPS FM Pure) 2025 January

Question 1
View details
1.
\includegraphics[max width=\textwidth, alt={}]{1b1cfccc-20f3-42f8-a1e1-d9405e7afcb9-04_400_513_169_774}
The diagram shows the curve \(y = 6 x - x ^ { 2 }\) and the line \(y = 5\). Find the area of the shaded region. You must show detailed reasoning.
(Total 4 marks)
[0pt] [BLANK PAGE]
Question 2
View details
2.
  1. Given that $$\frac { 3 + 2 x ^ { 2 } } { ( 1 + x ) ^ { 2 } ( 1 - 4 x ) } = \frac { A } { 1 + x } + \frac { B } { ( 1 + x ) ^ { 2 } } + \frac { C } { 1 - 4 x }$$ where \(A , B\) and \(C\) are constants, find \(B\) and \(C\), and show that \(A = 0\).
  2. Given that \(x\) is sufficiently small, find the first three terms of the binomial expansions of \(( 1 + x ) ^ { - 2 }\) and \(( 1 - 4 x ) ^ { - 1 }\). Hence find the first three terms of the expansion of \(\frac { 3 + 2 x ^ { 2 } } { ( 1 + x ) ^ { 2 } ( 1 - 4 x ) }\).
    (Total 8 marks)
    [0pt] [BLANK PAGE]
Question 3
View details
3. $$\mathbf { A } = \left( \begin{array} { c r } k & - 2
1 - k & k \end{array} \right) , \text { where } k \text { is constant. }$$ A transformation \(T : \mathbb { R } ^ { 2 } \rightarrow \mathbb { R } ^ { 2 }\) is represented by the matrix \(\mathbf { A }\).
  1. Find the value of \(k\) for which the line \(y = 2 x\) is mapped onto itself under \(T\).
  2. Show that \(\mathbf { A }\) is non-singular for all values of \(k\).
  3. Find \(\mathbf { A } ^ { - 1 }\) in terms of \(k\).
    [0pt] [BLANK PAGE]
Question 4
View details
4. $$\mathbf { A } = \left( \begin{array} { c c } 3 \sqrt { } 2 & 0
0 & 3 \sqrt { } 2 \end{array} \right) , \quad \mathbf { B } = \left( \begin{array} { c c } 0 & 1
1 & 0 \end{array} \right) , \quad \mathbf { C } = \left( \begin{array} { c c } \frac { 1 } { \sqrt { } 2 } & - \frac { 1 } { \sqrt { } 2 }
\frac { 1 } { \sqrt { } 2 } & \frac { 1 } { \sqrt { } 2 } \end{array} \right)$$
  1. Describe fully the transformations described by each of the matrices \(\mathbf { A } , \mathbf { B }\) and \(\mathbf { C }\). It is given that the matrix \(\mathbf { D } = \mathbf { C A }\), and that the matrix \(\mathbf { E } = \mathbf { D B }\).
  2. Show that \(\mathbf { E } = \left( \begin{array} { c c } - 3 & 3
    3 & 3 \end{array} \right)\). The triangle \(O R S\) has vertices at the points with coordinates \(( 0,0 ) , ( - 15,15 )\) and \(( 4,21 )\). This triangle is transformed onto the triangle \(O R ^ { \prime } S ^ { \prime }\) by the transformation described by \(\mathbf { E }\).
  3. Find the coordinates of the vertices of triangle \(O R ^ { \prime } S ^ { \prime }\).
  4. Find the area of triangle \(O R ^ { \prime } S ^ { \prime }\) and deduce the area of triangle \(O R S\).
    (3)
    [0pt] [BLANK PAGE] With respect to a fixed origin \(O\), the lines \(l _ { 1 }\) and \(l _ { 2 }\) are given by the equations $$\begin{aligned} & l _ { 1 } : \mathbf { r } = ( \mathbf { i } + 5 \mathbf { j } + 5 \mathbf { k } ) + \lambda ( 2 \mathbf { i } + \mathbf { j } - \mathbf { k } )
    & l _ { 2 } : \mathbf { r } = ( 2 \mathbf { j } + 12 \mathbf { k } ) + \mu ( 3 \mathbf { i } - \mathbf { j } + 5 \mathbf { k } ) \end{aligned}$$ where \(\lambda\) and \(\mu\) are scalar parameters.
  5. Show that \(l _ { 1 }\) and \(l _ { 2 }\) meet and find the position vector of their point of intersection.
  6. Show that \(l _ { 1 }\) and \(l _ { 2 }\) are perpendicular to each other. The point \(A\), with position vector \(5 \mathbf { i } + 7 \mathbf { j } + 3 \mathbf { k }\), lies on \(l _ { 1 }\)
    The point \(B\) is the image of \(A\) after reflection in the line \(l _ { 2 }\)
  7. Find the position vector of \(B\).
    [0pt] [BLANK PAGE]
Question 6 9 marks
View details
6. You are given the complex number \(w = 2 + 2 \sqrt { 3 } i\).
  1. Express \(w\) in modulus-argument form.
  2. Indicate on an Argand diagram the set of points, \(z\), which satisfy both of the following inequalities. $$- \frac { \pi } { 2 } \leqslant \arg z \leqslant \frac { \pi } { 3 } \text { and } | z | \leqslant 4$$ Mark \(w\) on your Argand diagram and find the greatest value of \(| z - w |\).
    [0pt] [9]
    (Total 12 marks)
    [0pt] [BLANK PAGE]
Question 7
View details
7. 7 A candlestick has base diamater 8 cm and height 28 cm , as shown in Figure 9. A model of the candlestick is shown in Figure 10, together with the equations that were used to create the model. \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Figure 9} \includegraphics[alt={},max width=\textwidth]{1b1cfccc-20f3-42f8-a1e1-d9405e7afcb9-16_835_428_456_276}
\end{figure} \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Figure 10} \includegraphics[alt={},max width=\textwidth]{1b1cfccc-20f3-42f8-a1e1-d9405e7afcb9-16_846_762_447_934}
\end{figure} a Show that the volume generated by rotating the shaded region (in Figure 10) \(2 \pi\) radians about the \(y\)-axis is \(\frac { 112 } { 15 } \pi\)
b Hence find the volume of metal needed to create the candlestick.
[0pt] [BLANK PAGE]
[0pt] [BLANK PAGE]
[0pt] [BLANK PAGE]
[0pt] [BLANK PAGE]
[0pt] [BLANK PAGE]
[0pt] [BLANK PAGE]