5 A particle \(P\) moves in a straight line, starting from rest at a point \(O\) on the line. At time \(t \mathrm {~s}\) after leaving \(O\) the acceleration of \(P\) is \(k \left( 16 - t ^ { 2 } \right) \mathrm { m } \mathrm { s } ^ { - 2 }\), where \(k\) is a positive constant, and the displacement from \(O\) is \(s \mathrm {~m}\). The velocity of \(P\) is \(8 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) when \(t = 4\).
- Show that \(s = \frac { 1 } { 64 } t ^ { 2 } \left( 96 - t ^ { 2 } \right)\).
- Find the speed of \(P\) at the instant that it returns to \(O\).
- Find the maximum displacement of the particle from \(O\).