- The diagram below represents the graph of the function \(y = ( 2 x - 5 ) ^ { 4 } - 1\)
\includegraphics[max width=\textwidth, alt={}, center]{1650b28f-be4e-4600-89ca-67c2d3026c5b-10_784_657_233_694}
a. Find the intersections of this graph with the \(x\) axis.
b. Hence find the exact value of the area bounded by the curve and the \(x\) axis.
a. Express \(2 \sqrt { 3 } \cos 2 x - 6 \sin 2 x\) in the form \(R \cos ( 2 x + \alpha )\) where \(R > 0\) and \(0 < \alpha < \frac { \pi } { 2 }\)
b. Hence
i. Solve the equation \(2 \sqrt { 3 } \cos 2 x - 6 \sin 2 x = 6\) for \(0 \leq x \leq 2 \pi\)
Giving your answers in terms of \(\pi\).
c. It can be shown that \(y = 9 \sin 2 x + 4 \cos 2 x\) can be written as \(y = \sqrt { 97 } \sin \left( 2 x + 24.0 ^ { \circ } \right)\)
i. State the transformations in the order of occurrence which transform the curve \(y = 9 \sin 2 x + 4 \cos 2 x\) to the curve \(y = \sin x\)
ii. Find the exact maximum and minimum values of the function;
$$f ( x ) = \frac { 1 } { 11 - 9 \sin 2 x - 4 \cos 2 x }$$