SPS SPS SM (SPS SM) 2022 January

Question 1
View details
1.
  1. Express \(\frac { 21 } { \sqrt { 7 } }\) in the form \(k \sqrt { 7 }\).
  2. Express \(8 ^ { - \frac { 1 } { 3 } }\) as an exact fraction in its simplest form.
Question 2
View details
2. A curve has equation \(y = 16 x + \frac { 1 } { x ^ { 2 } }\). Find
(A) \(\frac { \mathrm { d } y } { \mathrm {~d} x }\),
(B) \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\).
[0pt] [BLANK PAGE]
Question 3
View details
3. Triangle ABC is shown in Fig. 1. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{4eb48b49-816b-4a08-9f7f-c20313c4d1c9-06_517_652_237_845} \captionsetup{labelformat=empty} \caption{Fig. 1}
\end{figure} Find the perimeter of triangle ABC .
(3)
[0pt] [BLANK PAGE]
Question 4
View details
4. Find $$\int \frac { 2 x ^ { 2 } + 6 x - 5 } { 3 \sqrt { x ^ { 3 } } } d x$$ simplifying your answer.
[0pt] [BLANK PAGE]
Question 5
View details
5. Prove, from first principles, that the derivative of \(x ^ { 3 }\) is \(3 x ^ { 2 }\)
[0pt] [BLANK PAGE]
Question 6
View details
6. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{4eb48b49-816b-4a08-9f7f-c20313c4d1c9-12_570_922_118_374} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows the graph of \(y = \mathrm { f } ( x )\).
  1. Write down the number of solutions that exist for the equation
    1. \(\mathrm { f } ( x ) = 1\),
    2. \(\mathrm { f } ( x ) = - x\).
  2. Labelling the axes in a similar way, sketch on separate diagrams in the space provided the graphs of
    1. \(\quad y = \mathrm { f } ( x - 2 )\),
    2. \(y = \mathrm { f } ( 2 x )\).
      [0pt] [BLANK PAGE]
Question 7
View details
7. Prove by contradiction that \(\sqrt [ 3 ] { 2 }\) is an irrational number.
[0pt] [BLANK PAGE]
Question 8
View details
8. (a) Show that the equation $$4 \cos \theta - 1 = 2 \sin \theta \tan \theta$$ can be written in the form $$6 \cos ^ { 2 } \theta - \cos \theta - 2 = 0$$ (b) Hence solve, for \(0 \leqslant x < 90 ^ { \circ }\) $$4 \cos 3 x - 1 = 2 \sin 3 x \tan 3 x$$ giving your answers, where appropriate, to one decimal place.
(Solutions based entirely on graphical or numerical methods are not acceptable.)
[0pt] [BLANK PAGE]
Question 9
View details
9. $$\mathrm { f } ( x ) = x ^ { 3 } - 9 x ^ { 2 } + 24 x - 16$$
  1. Evaluate \(\mathrm { f } ( 1 )\) and hence state a linear factor of \(\mathrm { f } ( x )\).
  2. Show that \(\mathrm { f } ( x )\) can be expressed in the form $$\mathrm { f } ( x ) = ( x + p ) ( x + q ) ^ { 2 } ,$$ where \(p\) and \(q\) are integers to be found.
  3. Sketch the curve \(y = \mathrm { f } ( x )\) in the space provided.
  4. Using integration, find the area of the region enclosed by the curve \(y = \mathrm { f } ( x )\) and the \(x\)-axis.
    [0pt] [BLANK PAGE]
    [0pt] [BLANK PAGE]
    [0pt] [BLANK PAGE]
Question 10
View details
10. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{4eb48b49-816b-4a08-9f7f-c20313c4d1c9-22_659_970_141_614} \captionsetup{labelformat=empty} \caption{Figure 4}
\end{figure} Figure 4 shows a sketch of part of the curve \(C\) with equation $$y = \frac { 32 } { x ^ { 2 } } + 3 x - 8 , \quad x > 0$$ The point \(P ( 4,6 )\) lies on \(C\).
The line \(l\) is the normal to \(C\) at the point \(P\).
The region \(R\), shown shaded in Figure 4, is bounded by the line \(l\), the curve \(C\), the line with equation \(x = 2\) and the \(x\)-axis. Show that the area of \(R\) is 46
(Solutions based entirely on graphical or numerical methods are not acceptable.)
[0pt] [BLANK PAGE]
[0pt] [BLANK PAGE]
[0pt] [BLANK PAGE]
[0pt] [BLANK PAGE]
[0pt] [BLANK PAGE]