SPS SPS FM (SPS FM) 2022 November

Question 2
View details
  1. (a) Evaluate \(\left( 5 \frac { 4 } { 9 } \right) ^ { - \frac { 1 } { 2 } }\).
    (b) Find the value of \(x\) such that
$$\frac { 1 + x } { x } = \sqrt { 3 }$$ giving your answer in the form \(a + b \sqrt { 3 }\) where \(a\) and \(b\) are rational.
[0pt] [BLANK PAGE]
Question 3
View details
3. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{d8940254-0663-413e-a802-71519742cfcc-06_597_977_130_351} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows the graph of \(y = \mathrm { f } ( x )\).
  1. Write down the number of solutions that exist for the equation
    1. \(\mathrm { f } ( x ) = 1\),
    2. \(\mathrm { f } ( x ) = - x\).
  2. Labelling the axes in a similar way, sketch on separate diagrams in the space provided the graphs of
    1. \(\quad y = \mathrm { f } ( x - 2 )\),
    2. \(y = \mathrm { f } ( 2 x )\).
      [0pt] [BLANK PAGE]
Question 4
View details
4. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{d8940254-0663-413e-a802-71519742cfcc-08_721_982_114_347} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows the curve \(C\) with the equation \(y = x ^ { 3 } + 3 x ^ { 2 } - 4 x\) and the straight line \(l\). The curve \(C\) crosses the \(x\)-axis at the origin, \(O\), and at the points \(A\) and \(B\).
  1. Find the coordinates of \(A\) and \(B\). The line \(l\) is the tangent to \(C\) at \(O\).
  2. Find an equation for \(l\).
  3. Find the coordinates of the point where \(l\) intersects \(C\) again.
    [0pt] [BLANK PAGE]
Question 5
View details
5. (a) Evaluate $$\log _ { 3 } 27 - \log _ { 8 } 4$$ (b) Solve the equation $$4 ^ { x } - 3 \left( 2 ^ { x + 1 } \right) = 0$$ [BLANK PAGE]
Question 6
View details
6. A sequence of positive integers \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\) is defined by \(\left\{ \begin{array} { c } u _ { 1 } = 1
u _ { n + 1 } = 3 u _ { n } + 2 \end{array} ( n \geq 1 ) \right.\)
Prove by induction that \(u _ { n } = 2 \left( 3 ^ { n - 1 } \right) - 1\).
(4)
[0pt] [BLANK PAGE]
Question 7
View details
7. (a) Sketch on the same diagram in the space provided the graphs of \(y = 4 a ^ { 2 } - x ^ { 2 }\) and \(y = | 2 x - a |\), where \(a\) is a positive constant. Show, in terms of \(a\), the coordinates of any points where each graph meets the coordinate axes.
(b) Find the exact solutions of the equation $$4 - x ^ { 2 } = | 2 x - 1 |$$ [BLANK PAGE]
Question 8
View details
8. The points \(P , Q\) and \(R\) have coordinates \(( - 5,2 ) , ( - 3,8 )\) and \(( 9,4 )\) respectively.
  1. Show that \(\angle P Q R = 90 ^ { \circ }\). Given that \(P , Q\) and \(R\) all lie on circle \(C\),
  2. find the coordinates of the centre of \(C\),
  3. show that the equation of \(C\) can be written in the form $$x ^ { 2 } + y ^ { 2 } + a x + b y = k$$ where \(a , b\) and \(k\) are integers to be found.
    [0pt] [BLANK PAGE]
    [0pt] [BLANK PAGE]