SPS SPS SM (SPS SM) 2021 February

Question 1
View details
1. The histogram shows information about the lengths, \(l\) centimetres, of a sample of worms of a certain species.
\includegraphics[max width=\textwidth, alt={}, center]{a1f6d8ae-699f-496e-9fe8-cda87d73d27c-3_903_1287_379_201} The number of worms in the sample with lengths in the class \(3 \leqslant l < 4\) is 30 .
  1. Find the number of worms in the sample with lengths in the class \(0 \leqslant l < 2\).
  2. Find an estimate of the number of worms in the sample with lengths in the range \(4.5 \leqslant l < 5.5\).
Question 2
View details
2. A researcher is studying changes in behaviour in travelling to work by people who live outside London, between 2001 and 2011. He chooses the 15 Local Authorities (LAs) outside London with the largest decreases in the percentage of people driving to work, and arranges these in descending order. The table shows the changes in percentages from 2001 to 2011 in various travel categories, for these Local Authorities.
Local AuthorityWork mainly at or from homeUnderground, metro, light rail, tramTrainBus, minibus or coachDriving a car or vanPassenger in a car or vanBicycleOn foot
Brighton and Hove3.20.11.50.8-8.2-1.52.12.3
Cambridge2.20.01.61.2-7.4-1.03.10.6
Elmbridge2.90.44.10.2-6.6-0.70.3-0.3
Oxford2.00.00.6-0.4-5.2-1.12.22.1
Epsom and Ewell1.60.43.91.1-5.2-0.90.0-0.6
Watford0.72.03.10.4-4.5-1.20.0-0.1
Tandridge3.30.24.0-0.1-4.5-1.10.0-1.3
Mole Valley3.30.11.90.3-4.4-0.70.2-0.3
St Albans2.30.33.4-0.3-4.3-1.20.3-0.2
Chiltern2.91.41.40.1-4.2-0.6-0.2-0.8
Exeter0.70.01.0-0.6-4.2-1.51.73.4
Woking2.10.13.70.0-4.2-1.3-0.10.0
Reigate and Banstead1.80.13.20.6-4.1-1.00.1-0.2
Waverley4.30.12.5-0.5-3.9-0.9-0.3-0.9
Guildford2.70.12.40.2-3.6-1.20.0-0.3
  1. Explain why these LAs are not necessarily the 15 LAs with the largest decreases in the percentage of people driving to work.
  2. The researcher wants to talk to those LAs outside London which have been most successful in encouraging people to change to cycling or walking to work.
    Suggest four LAs that he should talk to and why.
  3. The researcher claims that Waverley is the LA outside London which has had the largest increase in the number of people working mainly at or from home.
    Does the data support his claim? Explain your answer.
  4. Which two categories have replaced driving to work for the highest percentages of workers in these LAs? Support your answer with evidence from the table.
  5. The researcher suggested that there would be strong correlation between the decrease in the percentage driving to work and the increase in percentage working mainly at or from home. Without calculation, use data from the table to comment briefly on this suggestion.
Question 3
View details
3. Some packets of a certain kind of biscuit contain a free gift. The manufacturer claims that the proportion of packets containing a free gift is 1 in 4 . Marisa suspects that this claim is not true, and that the true proportion is less than 1 in 4 . She chooses 20 packets at random and finds that exactly 1 contains the free gift.
  1. Use a binomial model to test the manufacturer's claim, at the \(2.5 \%\) significance level. The packets are packed in boxes, with each box containing 40 packets. Marisa chooses three boxes at random and finds that one box contains 19 packets with the free gift and the other two boxes contain no packets with the free gift.
  2. Give a reason why this suggests that the binomial model used in part (a) may not be appropriate.
Question 4
View details
4. \section*{In this question you must show detailed reasoning.} A biased four-sided spinner has edges numbered \(1,2,3,4\). When the spinner is spun, the probability that it will land on the edge numbered \(X\) is given by
\(P ( X = x ) = \begin{cases} \frac { 1 } { 2 } - \frac { 1 } { 10 } x & x = 1,2,3,4 ,
0 & \text { otherwise } . \end{cases}\)
  1. Draw a table showing the probability distribution of \(X\). The spinner is spun three times and the value of \(X\) is noted each time.
  2. Find the probability that the third value of \(X\) is greater than the sum of the first two values of \(X\). Name: \section*{U8th AS LEVEL Single Mathematics Assessment
    Mechanics } 22 \({ ^ { \text {nd } }\) February 2021} Instructions
    • Answer all the questions
    • Write your answer to each question in the space provided under each question. The question number(s) must be clearly shown.
    • Use black or blue ink. Pencil may be used for graphs and diagrams only.
    • You should clearly write your name at the top of this page and on any additional sheets that you use. There are blank pages at the end of the paper which you can use if needed.
    • You are permitted to use a scientific or graphical calculator in this paper.
    • Final answers should be given to a degree of accuracy appropriate to the context.
    Information
    • The total mark for this paper is \(\mathbf { 2 5 }\) marks.
    • The marks for each question are shown in brackets.
    • You are reminded of the need for clear presentation in your answers.
    • You should allow approximately 30 minutes for this section of the test
    \section*{Formulae} \section*{AS Level Mathematics A (H230)} \section*{Binomial series} $$( a + b ) ^ { n } = a ^ { n } + { } ^ { n } \mathrm { C } _ { 1 } a ^ { n - 1 } b + { } ^ { n } \mathrm { C } _ { 2 } a ^ { n - 2 } b ^ { 2 } + \ldots + { } ^ { n } \mathrm { C } _ { r } a ^ { n - r } b ^ { r } + \ldots + b ^ { n } \quad ( n \in \mathbb { N } ) ,$$ where \({ } ^ { n } \mathrm { C } _ { r } = { } _ { n } \mathrm { C } _ { r } = \binom { n } { r } = \frac { n ! } { r ! ( n - r ) ! }\) \section*{Differentiation from first principles} $$\mathrm { f } ^ { \prime } ( x ) = \lim _ { h \rightarrow 0 } \frac { \mathrm { f } ( x + h ) - \mathrm { f } ( x ) } { h }$$ \section*{Standard deviation} $$\sqrt { \frac { \sum ( x - \bar { x } ) ^ { 2 } } { n } } = \sqrt { \frac { \sum x ^ { 2 } } { n } - \bar { x } ^ { 2 } } \text { or } \sqrt { \frac { \sum f ( x - \bar { x } ) ^ { 2 } } { \sum f } } = \sqrt { \frac { \sum f x ^ { 2 } } { \sum f } - \bar { x } ^ { 2 } }$$ \section*{The binomial distribution} If \(X \sim \mathrm {~B} ( n , p )\) then \(P ( X = x ) = \binom { n } { x } p ^ { x } ( 1 - p ) ^ { n - x }\), mean of \(X\) is \(n p\), variance of \(X\) is \(n p ( 1 - p )\) \section*{Kinematics} \(v = u + a t\)
    \(s = u t + \frac { 1 } { 2 } a t ^ { 2 }\)
    \(s = \frac { 1 } { 2 } ( u + v ) t\)
    \(v ^ { 2 } = u ^ { 2 } + 2 a s\)
    \(s = v t - \frac { 1 } { 2 } a t ^ { 2 }\) \section*{1.} A particle is in equilibrium under the action of the following three forces:
    \(( 2 p \mathbf { i } - 4 \mathbf { j } ) \mathrm { N } , ( - 3 q \mathbf { i } + 5 p \mathbf { j } ) \mathrm { N }\) and \(( - 13 \mathbf { i } - 6 \mathbf { j } ) \mathrm { N }\).
    Find the values of p and q . \section*{2.} A crane lifts a car vertically. The car is inside a crate which is raised by the crane by means of a strong cable. The cable can withstand a maximum tension of 9500 N without breaking. The crate has a mass of 55 kg and the car has a mass of 830 kg .
  3. Find the maximum acceleration with which the crate and car can be raised.
  4. Show on a clearly labelled diagram the forces acting on the crate while it is in motion.
  5. Determine the magnitude of the reaction force between the crate and the car when they are ascending with maximum acceleration. \section*{3.} A particle \(P\) is moving in a straight line. At time \(t\) seconds \(P\) has velocity \(v \mathrm {~ms} ^ { - 1 }\) where \(v = ( 2 t + 1 ) ( 3 - t )\).
  6. Find the deceleration of \(P\) when \(t = 4\).
  7. State the positive value of \(t\) for which \(P\) is instantaneously at rest.
  8. Find the total distance that \(P\) travels between times \(t = 0\) and \(t = 4\). \section*{4.} A car starts from rest at a set of traffic lights and moves along a straight road with constant acceleration \(4 \mathrm {~m} \mathrm {~s} ^ { - 2 }\). A motorcycle, travelling parallel to the car with constant speed \(16 \mathrm {~m} \mathrm {~s} ^ { - 1 }\), passes the same traffic lights exactly 1.5 seconds after the car starts to move. The time after the car starts to move is denoted by \(t\) seconds.
  9. Determine the two values of \(t\) at which the car and motorcycle are the same distance from the traffic lights. These two values of \(t\) are denoted by \(t _ { 1 }\) and \(t _ { 2 }\), where \(t _ { 1 } < t _ { 2 }\).
  10. Describe the relative positions of the car and the motorcycle when \(t _ { 1 } < t < t _ { 2 }\).
  11. Determine the maximum distance between the car and the motorcycle when \(t _ { 1 } < t < t _ { 2 }\).