WJEC Further Unit 5 (Further Unit 5) 2022 June

Question 1
View details
  1. Rachel records the times taken, in minutes, to cycle into town from her house on a random sample of 10 days. Her results are shown below.
$$\begin{array} { l l l l l l l l l l } 15 \cdot 5 & 14 \cdot 9 & 16 \cdot 2 & 17 \cdot 3 & 14 \cdot 8 & 14 \cdot 2 & 16 \cdot 0 & 14 \cdot 2 & 15 \cdot 5 & 15 \cdot 1 \end{array}$$ Assuming that these data come from a normal distribution with mean \(\mu\) and variance \(0 \cdot 9\), calculate a \(90 \%\) confidence interval for \(\mu\).
Question 2
View details
2. Geraint is a beekeeper. The amounts of honey, \(X \mathrm {~kg}\), that he collects annually, from each hive are modelled by the normal distribution \(\mathrm { N } \left( 15,5 ^ { 2 } \right)\). At location \(A\), Geraint has three hives and at location \(B\) he has five hives. You may assume that the amounts of honey collected from the eight hives are independent of each other.
    1. Find the probability that Geraint collects more than 14 kg of honey from the first hive at location \(A\).
    2. Find the probability that he collects more than 14 kg of honey from exactly two out of the three hives at location \(A\).
  1. Find the probability that the total amount of honey that Geraint collects from all eight hives is more than 160 kg .
  2. Find the probability that Geraint collects at least twice as much honey from location B as from location A.
Question 3
View details
3. A statistics teacher wants to investigate whether students from the north of a county and students from the south of the same county feel similarly stressed about examinations. The teacher carries out a psychometric test on 10 randomly selected students to give a score between 0 (low stress) and 100 (high stress) to measure their stress levels before a set of examinations. The results are shown in the table below.
StudentAreaStress Level
HeleddNorth67
MairNorth55
HywelSouth26
GwynSouth70
LiamSouth36
MarcinSouth57
GosiaSouth32
KestutasNorth64
EricaNorth60
TomosNorth22
  1. State one reason why a Mann-Whitney test is appropriate.
  2. Conduct a Mann-Whitney test at a significance level as close to \(5 \%\) as possible. State your conclusion clearly.
  3. How could this investigation be improved?
Question 4
View details
4. The Department of Health recommends that adults aged 18 to 65 should take part in at least 150 minutes of aerobic exercise per week. The results of a survey show that 940 out of 2000 randomly selected adults aged 18 to 65 in Wales take part in at least 150 minutes of aerobic exercise per week.
  1. Calculate an approximate \(95 \%\) confidence interval for the proportion of adults aged 18 to 65 in Wales who take part in at least 150 minutes of aerobic exercise per week.
  2. Give two reasons why the interval is approximate.
  3. Suppose that a \(99 \%\) confidence interval is required, and that the width of the interval is to be no greater than \(0 \cdot 04\). Estimate the minimum additional number of adults to be surveyed to satisfy this requirement.
Question 5
View details
5. A laboratory carrying out screening for a certain blood disorder claims that the average time taken for test results to be returned is 38 hours. A reporter for a national newspaper suspects that the results take longer, on average, to be returned than claimed by the laboratory. The reporter finds the time, \(x\) hours, for 50 randomly selected results, in order to conduct a hypothesis test. The following summary statistics were obtained. $$\sum x = 2163 \quad \sum x ^ { 2 } = 98508$$
  1. Calculate the \(p\)-value for the reporter's hypothesis test, and complete the test using a \(5 \%\) level of significance. Hence write a headline for the reporter to use.
  2. Explain the relevance or otherwise of the Central Limit Theorem to your answer in part (a).
  3. Briefly explain why a random sample is preferable to taking a batch of 50 consecutive results.
  4. On another occasion, the reporter took a different random sample of 10 results.
    1. State, with a reason, what type of hypothesis test the reporter should use on this occasion.
    2. State one assumption required to carry out this test.
Question 6
View details
6. A zoologist knows that the median body length of adults in a species of fire-bellied toads is 4.2 cm . The zoologist thinks he has discovered a new subspecies of fire-bellied toads. If there is sufficient evidence to suggest the median body length differs from 4.2 cm , he will continue his studies to confirm whether he has discovered a new subspecies. Otherwise, he will abandon his studies on fire-bellied toads. The lengths of 10 randomly selected adult toads from the group being investigated are given below. $$\begin{array} { l l l l l l l l l l } 5 \cdot 0 & 3 \cdot 2 & 4 \cdot 9 & 4 \cdot 0 & 3 \cdot 3 & 4 \cdot 2 & 6 \cdot 1 & 4 \cdot 3 & 4 \cdot 8 & 5 \cdot 9 \end{array}$$ Carry out a suitable Wilcoxon signed rank test at a significance level as close to \(1 \%\) as possible and give your conclusion in context.
Question 7
View details
7.
\includegraphics[max width=\textwidth, alt={}, center]{65369843-222f-48b2-b8cd-a1c304eac3d9-6_707_718_347_660} The diagram above shows a cyclic quadrilateral \(A B C D\), where \(\widehat { B A D } = \alpha , \widehat { B C D } = \beta\) and \(\alpha + \beta = 180 ^ { \circ }\). These angles are measured.
The random variables \(X\) and \(Y\) denote the measured values, in degrees, of \(\widehat { B A D }\) and \(\widehat { B C D }\) respectively. You are given that \(X\) and \(Y\) are independently normally distributed with standard deviation \(\sigma\) and means \(\alpha\) and \(\beta\) respectively.
  1. Calculate, correct to two decimal places, the probability that \(X + Y\) will differ from \(180 ^ { \circ }\) by less than \(\sigma\).
  2. Show that \(T _ { 1 } = 45 ^ { \circ } + \frac { 1 } { 4 } ( 3 X - Y )\) is an unbiased estimator for \(\alpha\) and verify that it is a better estimator than \(X\) for \(\alpha\).
  3. Now consider \(T _ { 2 } = \lambda X + ( 1 - \lambda ) \left( 180 ^ { \circ } - Y \right)\).
    1. Show that \(T _ { 2 }\) is an unbiased estimator for \(\alpha\) for all values of \(\lambda\).
    2. Find \(\operatorname { Var } \left( T _ { 2 } \right)\) in terms of \(\lambda\) and \(\sigma\).
    3. Hence determine the value of \(\lambda\) which gives the best unbiased estimator for \(\alpha\).