WJEC Further Unit 2 (Further Unit 2) 2019 June

Question 1
View details
  1. (a) Sketch a scatter diagram of a dataset for which Spearman's rank correlation coefficient is + 1 , but the product moment correlation coefficient is less than 1 .
Two judges were judging cheese at the UK Cheese Festival. There were 8 blue cheeses in a particular category. The rankings are shown below.
CheeseABCDEFGH
Judge 115876432
Judge 213852467
(b) Calculate Spearman's rank correlation coefficient for this dataset.
(c) By sketching a scatter diagram of the rankings, or otherwise, comment on the extent to which the judges agree.
Question 2
View details
2. The probability of winning a certain game at a funfair is \(p\). Aman plays the game 5 times and Boaz plays the game 8 times. The independent random variables \(X\) and \(Y\) denote the number of wins for Aman and Boaz respectively.
  1. Given that \(\mathrm { E } ( X Y ) = 6 \cdot 4\), calculate \(p\).
  2. Find \(\operatorname { Var } ( X Y )\).
Question 3
View details
3. The number of claims made to the home insurance department of an insurance company follows a Poisson distribution with mean 4 per day.
  1. Find the probability that more than 11 claims are made in a 2 -day period. The number of claims made in a day to the pet insurance department of the same company follows a Poisson distribution with parameter \(\lambda\). An insurance company worker notices that the probability of two claims being made in a day is three times the probability of four claims being made in a day.
  2. Determine the value of \(\lambda\). The car insurance department models the length of time between claims for drivers aged 17 to 21 as an exponential distribution with mean 10 months. Rachel is 17 years old and has just passed her test. Her father says he will give her the car that they share if she does not make a claim in the first 12 months.
  3. What is the probability that her father gives her the car?
Question 4
View details
4. The continuous random variable, \(X\), has the following probability density function $$f ( x ) = \begin{cases} k x & \text { for } 0 \leqslant x < 1
k x ^ { 3 } & \text { for } 1 \leqslant x \leqslant 2
0 & \text { otherwise } \end{cases}$$ where \(k\) is a constant.
\includegraphics[max width=\textwidth, alt={}, center]{4ecf99c5-c4b3-41b7-a8df-a7c2ca7fcd6a-3_851_935_826_678}
  1. Show that \(k = \frac { 4 } { 17 }\).
  2. Determine \(\mathrm { E } ( X )\).
  3. Calculate \(\mathrm { E } ( 3 X - 1 )\) and \(\operatorname { Var } ( 3 X - 1 )\).
Question 5
View details
5. Chris is investigating the distribution of birth months for ice hockey players. He collects data for 869 randomly chosen National Hockey League (NHL) players. He decides to carry out a chi-squared test. Using a spreadsheet, he produces the following output.
ABcD
1Birth MonthObservedExpectedChi-Squared Contributions
2Jan-Mar259217.258.023302647
3Apr-June232217.251.001438435
4Jul-Sept200217.251.369677791
5Oct-Dec178217.257.091196778
6Total86986917.48561565
7
8p value
90.000561458
  1. By considering the output, state the null hypothesis that Chris is testing. State what conclusion Chris should reach and explain why. Chris now wonders if Premier League football players' birth months are distributed uniformly throughout the year. He collects the birth months of 75 randomly selected Premier League footballers. This information is shown in the table below.
    JanFebMarAprMayJunJulAugSepOctNovDec
    37114122665856
  2. Carry out the chi-squared goodness of fit test at the 10\% significance level that Chris should use to conduct his investigation.
Question 6
View details
6. The University of Arizona surveyed a large number of households. One purpose of the survey was to determine if annual household income could be predicted from size of family home. The graph of Annual household income, \(y\), versus Size of family home, \(x\), is shown below.
\includegraphics[max width=\textwidth, alt={}, center]{4ecf99c5-c4b3-41b7-a8df-a7c2ca7fcd6a-5_616_1257_566_365}
  1. State the limitations of using the regression line above with reference to the scatter diagram. The data for size of family homes between 2000 and 3000 square feet are shown in the diagram below.
    \includegraphics[max width=\textwidth, alt={}, center]{4ecf99c5-c4b3-41b7-a8df-a7c2ca7fcd6a-5_652_1244_1516_360} Summary statistics for these data are as follows. $$\begin{array} { r c c } \sum x = 93160 & \sum y = 3907142 & n = 37
    S _ { x x } = 2869673.03 & S _ { y y } = 44312797167 & S _ { x y } = 348512820 \cdot 6 \end{array}$$
  2. Calculate the equation of the least squares regression line to predict Annual household income from Size of family home for these data.
Question 7
View details
7. An article published in a medical journal investigated sports injuries in adolescents' ball games: football, handball and basketball. In a study of 906 randomly selected adolescent players in the three ball games, 379 players incurred injuries over the course of one year of playing the sport. Rhian wants to test whether there is an association between the site of injury and the sport played. A summary of the injuries is shown in the table below.
\multirow{2}{*}{}Site of injury
Observed valuesShoulder/ ArmHand/ FingersThigh/ LegKneeAnkleFootOtherTotal
\multirow{3}{*}{Sport}Football834536513612191
Handball14266154266115
Basketball428442211073
Total265755551154328379
  1. Calculate the values of \(A , B , C\) in the tables below.
    \multirow{2}{*}{}Site of injury
    Expected valuesShoulder/ ArmHand/ FingersThigh/ LegKneeAnkleFootOther
    \multirow{3}{*}{sodod}Football13.102928.725627.717727.717757.955121.670214.1108
    Handball7.889217.295516.688716.6887A13.04758.4960
    Basketball5.007910.978910.593710.593722.15048.28235.3931
    \multirow{2}{*}{}\multirow[b]{2}{*}{Chi-Squared Contributions}Site of injury
    Shoulder/ ArmHand/ FingersThigh/ LegKneeAnkleFootOther
    \multirow{3}{*}{sodoct}Football1.9873223.03890\(10 \cdot 77575\)2.47484\(B\)9.475860.31575
    Handball4.733334.38079C0.170871.446903.806640.73331
    Basketball0.2028626.388654.104004.104000.001026.403063.93521
  2. Given that the test statistic, \(X ^ { 2 }\), is 116.16, carry out the significance test at the \(5 \%\) level.
  3. Which site of injury most affects the conclusion of this test? Comment on your answer. Rhian also analyses the data on the type of contact that caused the injuries and the sport in which they occur, shown in the table below.
    Observed valuesBallOpponentSurfaceNoneTotal
    Football17681792194
    Handball23341938114
    Basketball2817121471
    Total6811948144379
    The chi-squared test statistic is 46.0937 . Rhian notes that this value is smaller than 116.16 , the test statistic in part (b). She concludes that there is weaker evidence for association in this case than there was in part (b).
  4. State Rhian's misconception and explain what she should consider instead. \section*{END OF PAPER}