4 The diagram shows two points A and B on a snowy slope. A is a vertical distance of 25 m above B.
\includegraphics[max width=\textwidth, alt={}, center]{d1ec7861-dc8b-450b-8e05-c70479ab0dc2-5_220_1376_306_244}
A rider and snowmobile, with a combined mass of 240 kg , start at the top of the slope, heading in the direction of \(B\). As the snowmobile passes \(A\), with a speed of \(3 \mathrm {~ms} ^ { - 1 }\), the rider switches off the engine so that the snowmobile coasts freely. When the snowmobile passes B, it has a speed of \(18 \mathrm {~ms} ^ { - 1 }\).
The resistances to motion can be modelled as a single, constant force of magnitude 120 N .
- Calculate the distance the snowmobile travels from A to B.
The rider now turns the snowmobile around and brings it back to B, so that it faces up the slope. Starting from rest, the snowmobile ascends the slope so that it passes A with a speed of \(7 \mathrm {~ms} ^ { - 1 }\). It takes 30 seconds for the snowmobile to travel from B to A. The resistances to motion can still be modelled as a single, constant force of magnitude 120 N .
- Show that the snowmobile develops an average power of 2856 W during this time.
The snowmobile can develop a maximum power of 6000 W . At a later point in the journey, the rider and snowmobile reach a different slope inclined at \(12 ^ { \circ }\) to the horizontal. The resistances to motion can still be modelled as a single, constant force of magnitude 120 N .
- Determine the maximum speed with which the rider and snowmobile can ascend.
The power developed by a vehicle is sometimes given in the non-SI unit mechanical horsepower \(( \mathrm { hp } ) .1 \mathrm { hp }\) is the power required to lift 550 pounds against gravity, starting and ending at rest, by 1 foot in 1 second.
- Given that 1 metre \(\approx 3.28\) feet and \(1 \mathrm {~kg} \approx 2.2\) pounds, determine the number of watts that are equivalent to 1 hp .