OCR MEI Further Pure Core AS (Further Pure Core AS) 2022 June

Question 1
View details
1
    1. Write the following simultaneous equations as a matrix equation. $$\begin{aligned} x + y + 2 z & = 7
      2 x - 4 y - 3 z & = - 5
      - 5 x + 3 y + 5 z & = 13 \end{aligned}$$
    2. Hence solve the equations.
  1. Determine the set of values of the constant \(k\) for which the matrix equation $$\left( \begin{array} { c c } k + 1 & 1
    2 & k \end{array} \right) \binom { x } { y } = \binom { 23 } { - 17 }$$ has a unique solution.
Question 2
View details
2
  1. Show that the vector \(\mathbf { i } + 4 \mathbf { j } + 2 \mathbf { k }\) is parallel to the plane \(2 \mathrm { x } + \mathrm { y } - 3 \mathrm { z } = 10\).
  2. Determine the acute angle between the planes \(2 x + y - 3 z = 10\) and \(x - y - 3 z = 3\).
Question 3
View details
3 The complex number \(z\) satisfies the equation \(5 ( z - \mathrm { i } ) = ( - 1 + 2 \mathrm { i } ) z ^ { * }\).
Determine \(z\), giving your answer in the form \(\mathrm { a } + \mathrm { bi }\), where \(a\) and \(b\) are real.
Question 4
View details
4 In this question you must show detailed reasoning. The equation \(z ^ { 3 } + 2 z ^ { 2 } + k z + 3 = 0\), where \(k\) is a constant, has roots \(\alpha , \frac { 1 } { \alpha }\) and \(\beta\).
Determine the roots in exact form.
Question 5
View details
5 An Argand diagram is shown below. The circle has centre at the point representing \(1 + 3 i\), and the half line intersects the circle at the origin and at the point representing \(4 + 4 \mathrm { i }\).
\includegraphics[max width=\textwidth, alt={}, center]{c4484913-14bf-4bf4-a290-0301586333ce-3_748_917_351_242} State the two conditions that define the set of complex numbers represented by points in the shaded segment, including its boundaries.
Question 6
View details
6
  1. Using standard summation formulae, show that \(\sum _ { r = 1 } ^ { n } r ( r + 2 ) = \frac { 1 } { 6 } n ( n + 1 ) ( 2 n + 7 )\).
  2. Use induction to prove the result in part (a).
Question 7
View details
7 On an Argand diagram, the point A represents the complex number \(z\) with modulus 2 and argument \(\frac { 1 } { 3 } \pi\). The point B represents \(\frac { 1 } { z }\).
  1. Sketch an Argand diagram showing the origin O and the points A and B .
  2. The point C is such that OACB is a parallelogram. C represents the complex number \(w\). Determine each of the following.
    • The modulus of \(w\), giving your answer in exact form.
    • The argument of \(w\), giving your answer correct to \(\mathbf { 3 }\) significant figures.
Question 8
View details
8 A transformation T of the plane has matrix \(\mathbf { M }\), where \(\mathbf { M } = \left( \begin{array} { l l } \cos \theta & 2 \cos \theta - \sin \theta
\sin \theta & 2 \sin \theta + \cos \theta \end{array} \right)\).
  1. Show that T leaves areas unchanged for all values of \(\theta\).
  2. Find the value of \(\theta\), where \(0 < \theta < \frac { 1 } { 2 } \pi\), for which the \(y\)-axis is an invariant line of T . The matrix \(\mathbf { N }\) is \(\left( \begin{array} { l l } 1 & 2
    0 & 1 \end{array} \right)\).
    1. Find \(\mathbf { M N } ^ { - 1 }\).
    2. Hence describe fully a sequence of two transformations of the plane that is equivalent to T . \section*{END OF QUESTION PAPER} OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (\href{http://www.ocr.org.uk}{www.ocr.org.uk}) after the live examination series.
      If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.
      For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.
      OCR is part of Cambridge University Press \& Assessment, which is itself a department of the University of Cambridge.