CAIE P1 (Pure Mathematics 1) 2017 June

Question 1
View details
1
  1. Find the coefficient of \(x\) in the expansion of \(\left( 2 x - \frac { 1 } { x } \right) ^ { 5 }\).
  2. Hence find the coefficient of \(x\) in the expansion of \(\left( 1 + 3 x ^ { 2 } \right) \left( 2 x - \frac { 1 } { x } \right) ^ { 5 }\).
Question 2
View details
2 The point \(A\) has coordinates ( \(- 2,6\) ). The equation of the perpendicular bisector of the line \(A B\) is \(2 y = 3 x + 5\).
  1. Find the equation of \(A B\).
  2. Find the coordinates of \(B\).
Question 3
View details
3
  1. Prove the identity \(\left( \frac { 1 } { \cos \theta } - \tan \theta \right) ^ { 2 } \equiv \frac { 1 - \sin \theta } { 1 + \sin \theta }\).
  2. Hence solve the equation \(\left( \frac { 1 } { \cos \theta } - \tan \theta \right) ^ { 2 } = \frac { 1 } { 2 }\), for \(0 ^ { \circ } \leqslant \theta \leqslant 360 ^ { \circ }\).
    \includegraphics[max width=\textwidth, alt={}, center]{8a3f8707-67a4-4069-aba5-7e9496cb1748-06_572_460_258_845} The diagram shows a circle with radius \(r \mathrm {~cm}\) and centre \(O\). Points \(A\) and \(B\) lie on the circle and \(A B C D\) is a rectangle. Angle \(A O B = 2 \theta\) radians and \(A D = r \mathrm {~cm}\).
Question 4
View details
  1. Express the perimeter of the shaded region in terms of \(r\) and \(\theta\).
  2. In the case where \(r = 5\) and \(\theta = \frac { 1 } { 6 } \pi\), find the area of the shaded region.
Question 5
View details
5 A curve has equation \(y = 3 + \frac { 12 } { 2 - x }\).
  1. Find the equation of the tangent to the curve at the point where the curve crosses the \(x\)-axis.
  2. A point moves along the curve in such a way that the \(x\)-coordinate is increasing at a constant rate of 0.04 units per second. Find the rate of change of the \(y\)-coordinate when \(x = 4\).
Question 6
View details
6
\includegraphics[max width=\textwidth, alt={}, center]{8a3f8707-67a4-4069-aba5-7e9496cb1748-10_588_583_260_781} The diagram shows the straight line \(x + y = 5\) intersecting the curve \(y = \frac { 4 } { x }\) at the points \(A ( 1,4 )\) and \(B ( 4,1 )\). Find, showing all necessary working, the volume obtained when the shaded region is rotated through \(360 ^ { \circ }\) about the \(x\)-axis.
Question 7
View details
7
  1. The first two terms of an arithmetic progression are 16 and 24. Find the least number of terms of the progression which must be taken for their sum to exceed 20000.
  2. A geometric progression has a first term of 6 and a sum to infinity of 18. A new geometric progression is formed by squaring each of the terms of the original progression. Find the sum to infinity of the new progression.
Question 8
View details
8 Relative to an origin \(O\), the position vectors of three points \(A , B\) and \(C\) are given by $$\overrightarrow { O A } = 3 \mathbf { i } + p \mathbf { j } - 2 p \mathbf { k } , \quad \overrightarrow { O B } = 6 \mathbf { i } + ( p + 4 ) \mathbf { j } + 3 \mathbf { k } \quad \text { and } \quad \overrightarrow { O C } = ( p - 1 ) \mathbf { i } + 2 \mathbf { j } + q \mathbf { k }$$ where \(p\) and \(q\) are constants.
  1. In the case where \(p = 2\), use a scalar product to find angle \(A O B\).
  2. In the case where \(\overrightarrow { A B }\) is parallel to \(\overrightarrow { O C }\), find the values of \(p\) and \(q\).
Question 9
View details
9 The equation of a curve is \(y = 8 \sqrt { } x - 2 x\).
  1. Find the coordinates of the stationary point of the curve.
  2. Find an expression for \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) and hence, or otherwise, determine the nature of the stationary point.
  3. Find the values of \(x\) at which the line \(y = 6\) meets the curve.
  4. State the set of values of \(k\) for which the line \(y = k\) does not meet the curve.
Question 10
View details
10 The function f is defined by \(\mathrm { f } ( x ) = 3 \tan \left( \frac { 1 } { 2 } x \right) - 2\), for \(- \frac { 1 } { 2 } \pi \leqslant x \leqslant \frac { 1 } { 2 } \pi\).
  1. Solve the equation \(\mathrm { f } ( x ) + 4 = 0\), giving your answer correct to 1 decimal place.
  2. Find an expression for \(\mathrm { f } ^ { - 1 } ( x )\) and find the domain of \(\mathrm { f } ^ { - 1 }\).
  3. Sketch, on the same diagram, the graphs of \(y = \mathrm { f } ( x )\) and \(y = \mathrm { f } ^ { - 1 } ( x )\).