OCR Further Mechanics AS (Further Mechanics AS) 2019 June

Question 1
View details
1
\includegraphics[max width=\textwidth, alt={}, center]{74bada9e-60cf-4ed4-abd0-4be155b7cf81-2_533_424_402_246} A smooth wire is shaped into a circle of radius 2.5 m which is fixed in a vertical plane with its centre at a point \(O\). A small bead \(B\) is threaded onto the wire. \(B\) is held with \(O B\) vertical and is then projected horizontally with an initial speed of \(8.4 \mathrm {~ms} ^ { - 1 }\) (see diagram).
  1. Find the speed of \(B\) at the instant when \(O B\) makes an angle of 0.8 radians with the downward vertical through \(O\).
  2. Determine whether \(B\) has sufficient energy to reach the point on the wire vertically above \(O\).
Question 2
View details
2 A particle \(A\) of mass 3.6 kg is attached by a light inextensible string to a particle \(B\) of mass 2.4 kg .
\(A\) and \(B\) are initially at rest, with the string slack, on a smooth horizontal surface. \(A\) is projected directly away from \(B\) with a speed of \(7.2 \mathrm {~ms} ^ { - 1 }\).
  1. Calculate the speed of \(A\) after the string becomes taut.
  2. Find the impulse exerted on \(A\) at the instant that the string becomes taut.
  3. Find the loss in kinetic energy as a result of the string becoming taut.
Question 3
View details
3 A car of mass 1500 kg has an engine with maximum power 60 kW . When the car is travelling at \(10 \mathrm {~ms} ^ { - 1 }\) along a straight horizontal road using maximum power, its acceleration is \(3.3 \mathrm {~ms} ^ { - 2 }\). In an initial model of the motion of the car it is assumed that the resistance to motion is constant.
  1. Using this initial model, find the greatest possible steady speed of the car along the road. In a refined model the resistance to motion is assumed to be proportional to the speed of the car.
  2. Using this refined model, find the greatest possible steady speed of the car along the road. The greatest possible steady speed of the car on the road is measured and found to be \(21.6 \mathrm {~ms} ^ { - 1 }\).
  3. Explain what this value means about the models used in parts (a) and (b).
Question 4
View details
4 A student is studying the speed of sound, \(u\), in a gas under different conditions. He assumes that \(u\) depends on the pressure, \(p\), of the gas, the density, \(\rho\), of the gas and the wavelength, \(\lambda\), of the sound in the relationship \(u = k p ^ { \alpha } \rho ^ { \beta } \lambda ^ { \gamma }\), where \(k\) is a dimensionless constant. (The wavelength of a sound is the distance between successive peaks in the sound wave.)
  1. Use the fact that density is mass per unit volume to find \([ \rho ]\).
  2. Given that the units of \(p\) are \(\mathrm { Nm } ^ { - 2 }\), determine the values of \(\alpha , \beta\) and \(\gamma\).
  3. Comment on what the value of \(\gamma\) means about how fast sounds of different wavelengths travel through the gas. The student carries out two experiments, \(A\) and \(B\), to measure \(u\). Only the density of the gas varies between the experiments, all other conditions being unchanged. He finds that the value of \(u\) in experiment \(B\) is double the value in experiment \(A\).
  4. By what factor has the density of the gas in experiment \(A\) been multiplied to give the density of the gas in experiment \(B\) ?
    \includegraphics[max width=\textwidth, alt={}, center]{74bada9e-60cf-4ed4-abd0-4be155b7cf81-4_659_401_269_251} As shown in the diagram, \(A B\) is a long thin rod which is fixed vertically with \(A\) above \(B\). One end of a light inextensible string of length 1 m is attached to \(A\) and the other end is attached to a particle \(P\) of mass \(m _ { 1 } \mathrm {~kg}\). One end of another light inextensible string of length 1 m is also attached to \(P\). Its other end is attached to a small smooth ring \(R\), of mass \(m _ { 2 } \mathrm {~kg}\), which is free to move on \(A B\). Initially, \(P\) moves in a horizontal circle of radius 0.6 m with constant angular velocity \(\omega _ { \text {rads } } { } ^ { - 1 }\). The magnitude of the tension in string \(A P\) is denoted by \(T _ { 1 } \mathrm {~N}\) while that in string \(P R\) is denoted by \(T _ { 2 } \mathrm {~N}\).
Question 5
View details
  1. By considering forces on \(R\), express \(T _ { 2 }\) in terms of \(m _ { 2 }\).
  2. Show that
    1. \(T _ { 1 } = \frac { 49 } { 4 } \left( m _ { 1 } + m _ { 2 } \right)\),
    2. \(\omega ^ { 2 } = \frac { 49 \left( m _ { 1 } + 2 m _ { 2 } \right) } { 4 m _ { 1 } }\).
  3. Deduce that, in the case where \(m _ { 1 }\) is much bigger than \(m _ { 2 } , \omega \approx 3.5\). In a different case, where \(m _ { 1 } = 2.5\) and \(m _ { 2 } = 2.8 , P\) slows down. Eventually the system comes to rest with \(P\) and \(R\) hanging in equilibrium.
  4. Find the total energy lost by \(P\) and \(R\) as the angular velocity of \(P\) changes from the initial value of \(\omega \mathrm { rads } ^ { - 1 }\) to zero.
Question 6
View details
6 Particles \(A\) of mass \(2 m\) and \(B\) of mass \(m\) are on a smooth horizontal floor. \(A\) is moving with speed \(u\) directly towards a vertical wall, and \(B\) is at rest between \(A\) and the wall (see diagram).
\includegraphics[max width=\textwidth, alt={}, center]{74bada9e-60cf-4ed4-abd0-4be155b7cf81-5_224_828_354_244} A collides directly with \(B\). The coefficient of restitution in this collision is \(\frac { 1 } { 2 }\).
\(B\) then collides with the wall, rebounds, and collides with \(A\) for a second time.
  1. Show that the speed of \(B\) after its second collision with \(A\) is \(\frac { 1 } { 2 } u\). The first collision between \(A\) and \(B\) occurs at a distance \(d\) from the wall. The second collision between \(A\) and \(B\) occurs at a distance \(\frac { 1 } { 5 } d\) from the wall.
  2. Find the coefficient of restitution for the collision between \(B\) and the wall.